欢迎访问沈阳真空杂志社 Email Alert    RSS服务

真空 ›› 2019, Vol. 56 ›› Issue (5): 56-60.doi: 10.13385/j.cnki.vacuum.2019.05.11

• • 上一篇    下一篇

等离子体增强原子层沉积技术制备碳化钴薄膜*

樊启鹏, 胡玉莲, 刘博文, 田旭, 江德荣, 刘忠伟   

  1. 北京印刷学院 印刷包装材料与技术北京市重点实验室 等离子体物理与材料研究室; 北京 10260
  • 收稿日期:2018-12-26 发布日期:2019-10-15
  • 通讯作者: 刘忠伟,教授。
  • 作者简介:樊启鹏(1994-),江西省南昌市人,男,硕士生。
  • 基金资助:
    *国家自然科学基金(11775028),绿色印刷与出版技术协同创新中心(15208),北京市大学生科研计划(201803011),北京印刷学院校级项目(Ea201801 and 12000400001, 04190118002/016)

Deposition of Cobalt Carbide Films by Plasma Enhanced Atomic Layer Deposition

FAN Qi-peng, HU Yu-lian, LIU Bo-wen, TIAN Xu, JIANG De-rong, LIU Zhong-wei   

  1. Beijing Key Laboratory of Printing & Packaging Materials and Technology, Laboratory of Plasma Physics and Materials, Beijing Institute of Graphic Communication, Beijing 102600, China
  • Received:2018-12-26 Published:2019-10-15

摘要: 报道了一种新型PE-ALD工艺用于沉积碳化钴薄膜。以脒基钴为前驱体,在氢等离子体作用下,成功制备了碳化钴薄膜。薄膜厚度与沉积循环关系显示薄膜生长为理想的逐层生长行为,100℃下薄膜生长速率为0.066 nm/cycle。利用XRD和TEM对所沉积的薄膜进行表征,结果表明薄膜是多晶的六方晶系Co3C晶体结构。XPS的结果表明沉积的碳化钴膜具有高纯度。在深宽比高达20:1的硅基底沟槽中研究碳化钴薄膜的保型性,显示该PE-ALD工艺可以沉积厚度均匀、光滑且高度保形的碳化钴薄膜,这有利于在高深宽比的3D结构中的涂覆并且在负载催化剂领域具有潜在应用。

关键词: 氢等离子体, 原子层沉积, 碳化钴薄膜, 低温

Abstract: In this article, we reported a new PE-ALD method for depositing cobalt carbide thin films. The cobalt carbide film was successfully prepared under the used of Co(amd)2 as precursor and H2 plasma as the reactant. The relationship between film thickness and deposition cycle showed an ideal layer-by-layer film growth behavior with a saturated film growth rate of 0.66 nm/cycle at 100℃. The as-deposited films were characterized by XRD and TEM, which illustrated the films were polycrystalline hexagonal Co3C crystal structures. The XPS indicated a high purity deposited cobalt carbide film. This PE-ALD process could deposit a pure, smooth and highly conformal cobalt carbide thin film in trench with 201 aspect ratio, which can be beneficial to coating on complex high-aspect-ratio 3D structures with potential applications in microelectronics and catalytic fields.

Key words: hydrogen plasma, atomic layer deposition, cobalt carbide thin film, low temperature

中图分类号: 

  • TB34
[1] Li S, Yang C, Yin Z, et al.Wet-chemistry synthesis of cobalt carbide nanoparticles as highly active and stable electrocatalyst for hydrogen evolution reaction[J]. Nano Research, 2017, 10(4):1322-1328.
[2] Wang H, Wong S P, Cheung W Y, et al.Magnetic properties and structure evolution of amorphous Co-C nanocomposite films prepared by pulsed filtered vacuum arc deposition[J]. Journal of Applied Physics, 2000,88(8):4919-4921.
[3] Fracassi F, d′Agostino R, Lamendola R, et al. Plasma assisted dry etching of cobalt silicide for microelectronics applications[J]. Journal of the Electrochemical Society,1996,143(2):701-707.
[4] Xu J, Wang Q F, Wang X W, et al.Flexible asymmetric supercapacitors based upon Co9S8 Nanorod//Co3O4@RuO2 Nanosheet arrays on carbon Cloth[J]. Acs Nano, 2013,7(6):5453-5462.
[5] Yang W, Rehman S, Chu X, et al.Transition Metal (Fe, Co and Ni) Carbide and Nitride Nanomaterials: Structure, Chemical Synthesis and Applications[J]. Chem.Nano.Mat.,2015, 1(6):376-398.
[6] Hou T, Zhang S, Chen Y, et al.Hydrogen production from ethanol reforming: Catalysts and reaction mechanism[J]. Renewable and Sustainable Energy Reviews ,2015,44:132-148.
[7] Rodriguez-Gomez A, Holgado J P, Caballero A.Cobalt carbide identified as catalytic site for the dehydrogenation of ethanol to acetaldehyde[J]. Acs Catalysis,2017, 7(8):5243-5247.
[8] Harris V G, Chen Y, Yang A, et al.High coercivity cobalt carbide nanoparticles processed via polyol reaction: a new permanent magnet material[J]. Journal of Physics D: Applied Physics, 2010,43(16),165003.
[9] Portnoi V K, Leonov A V.Mechanochemical synthesis of Co-C materials[J]. Inorganic Materials, 2012,48(6): 593-600.
[10] Tajima S, Hirano S -I.Synthesis and properties of cobalt carbide film by radio-frequency magnetron sputtering[J]. Journal of Materials Science Letters, 1992,11(1):22-25.
[11] Premkumar P A, Turchanin A, Bahlawane N.Effect of solvent on the growth of Co and Co2C using pulsed-spray evaporation chemical vapor deposition[J]. Chemistry of Materials,2007, 19(25):6206-6211.
[12] Pakkala A, Putkonen M, Handbook of Deposition Technologies for Films and Coatings[M]. 3rd ed. Boston:William Andrew Publishing, 2009:364-391.
[13] George S M.Atomic layer deposition: An overview[J]. Chemical Reviews, 2010,110(1):111-131.
[14] Sarr M, Bahlawane N, Arl D, et al.Atomic layer deposition of cobalt carbide films and their magnetic properties using propanol as a reducing agent[J]. Applied Surface Science, 2016,379:523-529.
[15] Lim B S, Rahtu A, Gordon R G.Atomic layer deposition of transition metals[J]. Nat.Mater.,2003,2(11):749-754.
[16] Ritala M, Leskelä M.Handbook of Thin Films[M]. Burlington:Academic Press, 2002:103-159.
[17] Guo Q, Guo Z, Shi J, et al.Atomic layer deposition of nickel carbide from a nickel amidinate precursor and hydrogen plasma[J]. ACS Applied Materials & Interfaces, 2018,10(9):8384-8390.
[18] Shao Y, Guo Z, Li H, et al.Atomic layer deposition of iron sulfide and its application as a catalyst in the hydrogenation of azobenzenes[J]. Angewandte Chemie - International Edition, 2017,56(12):3226-3231.
[1] 赵洲, 王欣. 高压低温液氧管线波纹补偿器失稳分析研究[J]. 真空, 2019, 56(5): 26-29.
[2] 张子欣, 刘忠伟, 杨丽珍, 陈强. 等离子体辅助原子层沉积技术包覆硅基氮化物荧光粉的结果性能研究[J]. 真空, 2019, 56(4): 19-23.
[3] 陈鑫, 陈金龙, 朱根良, 徐红兵, 付猷昆. HL-2M氦回收纯化系统建设[J]. 真空, 2019, 56(2): 16-18.
[4] 李晓峰, 陈光奇, 白杨, 任改红. 分子筛在低温低压下的吸附特性试验研究[J]. 真空, 2019, 56(2): 45-49.
[5] 赵月帅, 孙立臣, 邵容平, 闫荣鑫, 孙 伟, 李 征. DN1250 液氮屏蔽型制冷机低温泵的研制与性能测试[J]. 真空, 2019, 56(1): 1-5.
[6] 申付波, 王 杰, 翟 悦, 周志鹏. 轻型低温吸附床壳体的研究与优化设计[J]. 真空, 2018, 55(6): 42-44.
[7] 李志胜. 空间环境下超大型红外定标用辐射屏蔽门的研制[J]. 真空, 2018, 55(5): 66-70.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李得天, 成永军, 张虎忠, 孙雯君, 王永军, 孙 健, 李 刚, 裴晓强. 碳纳米管场发射阴极制备及其应用研究[J]. 真空, 2018, 55(5): 1 -9 .
[2] 周彬彬, 张 建, 何剑锋, 董长昆. 基于 CVD 直接生长法的碳纳米管场发射阴极[J]. 真空, 2018, 55(5): 10 -14 .
[3] 李志胜. 空间环境下超大型红外定标用辐射屏蔽门的研制[J]. 真空, 2018, 55(5): 66 -70 .
[4] 郑 列, 李 宏. 200kV/2mA 连续可调直流高压发生器的设计[J]. 真空, 2018, 55(6): 10 -13 .
[5] 柴晓彤, 汪 亮, 王永庆, 刘明昆, 刘星洲, 干蜀毅. 基于 STM32F103 单片机的单泵运行参数数据采集系统[J]. 真空, 2018, 55(5): 15 -18 .
[6] 孙立志, 闫荣鑫, 李天野, 贾瑞金, 李 征, 孙立臣, 王 勇, 王 健, 张 强. 放样氙气在大型收集室内分布规律研究[J]. 真空, 2018, 55(5): 38 -41 .
[7] 黄 思 , 王学谦 , 莫宇石 , 张展发 , 应 冰 . 液环压缩机性能相似定律的实验研究[J]. 真空, 2018, 55(5): 42 -45 .
[8] 纪 明, 孙 亮, 杨敏勃. 一种用于对月球样品自动密封锁紧的设计[J]. 真空, 2018, 55(6): 24 -27 .
[9] 李民久, 熊 涛, 姜亚南, 贺岩斌, 陈庆川. 基于双管正激式变换器的金属表面去毛刺 20kV 高压脉冲电源[J]. 真空, 2018, 55(5): 19 -24 .
[10] 刘燕文, 孟宪展, 田 宏, 李 芬, 石文奇, 朱 虹, 谷 兵, 王小霞 . 空间行波管极高真空的获得与测量[J]. 真空, 2018, 55(5): 25 -28 .