欢迎访问沈阳真空杂志社 Email Alert    RSS服务

真空 ›› 2019, Vol. 56 ›› Issue (6): 1-6.doi: 10.13385/j.cnki.vacuum.2019.06.01

• •    下一篇

新型双极性高功率脉冲磁控溅射电源及放电特性研究*

吴厚朴, 田钦文, 田修波, 巩春志   

  1. 哈尔滨工业大学,先进焊接与连接国家重点实验室,黑龙江 哈尔滨 150001
  • 收稿日期:2019-07-07 出版日期:2019-11-25 发布日期:2019-12-03
  • 通讯作者: 田修波,教授,博导。
  • 作者简介:吴厚朴(1995- ),男,河南省商丘市人,博士生。
  • 基金资助:
    国家自然科学基金(No.51811530059)

Development and Discharge Behavior of Novel Double Bipolar Pulse High Power Impulse Magnetron Sputtering System

WU Hou-pu, TIAN Qin-wen, TIAN Xiu-bo, GONG Chun-zhi   

  1. State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China
  • Received:2019-07-07 Online:2019-11-25 Published:2019-12-03

摘要: 独立设计研制了新型两段式双极性脉冲高功率脉冲磁控溅射电源,本电源具备3种工作模式:(1)传统高功率脉冲磁控溅射(HiPIMS)放电模式,(2)双极性脉冲高功率脉冲磁控溅射(BP-HiPIMS)放电模式和(3)两段式双极性脉冲高功率脉冲磁控溅射(DBP-HiPIMS)放电模式。特别是新提出的第三种工作模式,两段式双极性脉冲较传统的单段双极性脉冲具有较大的优势。本文研究了在传统BP-HiPIMS和新DBP-HiPIMS条件下,正向脉冲对Cr靶在Ar气气氛下的放电特性的影响。研究发现:随着正向脉冲电压的增加,BP-HiPIMS和DBP-HiPIMS基体净离子平均电流均明显提高,且相比传统BP-HiPIMS模式,新型DBP-HiPIMS放电模式在不同正向脉冲电压时均具有更高的基体净离子平均电流。正向脉冲电压为100V时,在基体偏压为0V和60V条件下,DBP-HiPIMS模式的基体净离子平均电流较传统BP-HiPIMS模式分别提高47.0%和30.3%。表明新型DBP-HiPIMS放电模式能够进一步提高正向脉冲对离子的推动加速作用,这将有利于膜层质量的提高。

关键词: 双极性脉冲高功率脉冲磁控溅射, 正向脉冲, 靶电压, 靶电流, 基体电流

Abstract: A novel double bipolar pulse high power impulse magnetron sputtering power supply was designed and developed independently. The power supply contains three working modes including the discharge mode of conventional high power impulse magnetron sputtering (HiPIMS), the discharge mode of conventional bipolar pulse high power impulse magnetron sputtering (BP-HiPIMS) and the discharge mode of double bipolar pulse high power impulse magnetron sputtering (DBP-HiPIMS). Especially for the third mode, the double bipolar pulse has more advantages than that of the conventional single bipolar pulse. The effects of positive pulse on the discharge characteristics of Cr target in Ar atmosphere under the conditions of conventional BP-HiPIMS and novel DBP-HiPIMS were studied. The results show that the average substrate net ion current of both BP-HiPIMS and DBP-HiPIMS significantly increased with the increase of the positive pulse voltage. Compared with the conventional BP-HiPIMS mode, the DBP-HiPIMS mode has higher average substrate net ion current at different positive pulse voltages. When the positive pulse voltage was 100V, the average substrate net ion current of DBP-HiPIMS mode was 47.0% higher than that of the conventional BP-HiPIMS mode when the substrate bias was 0V and 30.3% higher when the substrate bias was 60V. The results show that the novel DBP-HiPIMS discharge mode can further improve the acceleration effect of positive pulse on ions, which will be conducive to the improvement of film quality.

Key words: bipolar pulse high power impulse magnetron sputtering, positive pulse, target voltage, target current, substrate current

中图分类号: 

  • TB43
[1] Kouznetsov V, Macák K, Schneider J M, et al.A novel pulsed magnetron sputter technique utilizing very high target power densities[J]. Surface and Coatings Technology, 1999, 122(2-3):290-293.
[2] Macák. K, Kouznetsov V, Schneider J M, et al. Ionized sputter deposition using an extremely high plasma density pulsed magnetron discharge[J]. Journal of Vacuum Science & Technology A, 2000, 18(4):1533-1537.
[3] Shimizu T, Teranishi Y, Morikawa K, et al.Impact of pulse duration in high power impulse magnetron sputtering on the low-temperature growth of wurtzite phase (Ti,Al)N films with high hardness[J]. Thin Solid Films, 2015, 581:39-47.
[4] Zhao X, Jin J, Cheng J C, et al.Effect of pulsed off-times on the reactive HiPIMS preparation of zirconia thin films[J]. Vacuum, 2015, 118:38-42.
[5] 吴志立, 朱小鹏, 雷明凯. 高功率脉冲磁控溅射沉积原理与工艺研究进展[J]. 中国表面工程, 2012, 25(5):15-20.
[6] Paulitsch J, Schenkel M, Schintlmeister A, et al.Low friction CrN/TiN multilayer coatings prepared by a hybrid high power impulse magnetron sputtering/DC magnetron sputtering deposition technique[J]. Thin Solid Films, 2010, 518(19):5553-5557.
[7] AndersA. Deposition rates of high power impulse magnetron sputtering: Physics and economics[J]. Journal of Vacuum Science & Technology A, 2010, 28(4):783.
[8] Greczynski G, Hultman L.Peak amplitude of target current determines deposition rate loss during high power pulsed magnetron sputtering[J]. Vacuum, 2016, 124:1-4.
[9] Nakano T, Murata C, Baba S.Effect of the target bias voltage during off-pulse period on the impulse magnetron sputtering[J]. Vacuum, 2010, 84(12):1368-1371.
[10] Wu B, Haehnlein I, Shchelkanov I, et al.Cu films prepared by bipolar pulsed high power impulse magnetron sputtering[J]. Vacuum, 2018, 150:216-221.
[11] Britun N, Michiels M, Godfroid T, et al.Ion density evolution in a high-power sputtering discharge with bipolar pulsing[J]. Applied physics letters, 2018, 112:234103.
[12] Keraudy J, Viloan R P B, Raadu M A, et al. Bipolar HiPIMS for tailoring ion energies in thin film deposition[J]. Surface & Coatings Technology, 2019, 359:433-437.
[13] Gudmundsson J T.Ionization mechanism in the high power impulse magnetron sputtering (HiPIMS) discharge[J]. Journal of Physics: Conference Series, 2008, 100: 082001.
[14] 田修波, 吴忠振, 石经纬, 等. 高脉冲功率密度复合磁控溅射电源研制及放电特性研究[J]. 真空, 2010, 47(3):44-47.
[15] 马英鹤, 田修波, 蔡明哲, 等. 新型阴极弧电源研制及脉冲增强电子发射(P3e)效应研究[J]. 真空, 2014, 51(4):31-34.
[16] 吴厚朴, 田修波, 张新宇, 等. 双脉冲HiPIMS放电特性及CrN薄膜高速率沉积[J]. 金属学报, 2018, 55(3):299-307.
[17] Oks E, AndersA. Evolution of the plasma composition of a high power impulse magnetron sputtering system studied with a time-of-flight spectrometer[J]. Journal of Applied Physics, 2009, 105(9):093304.
[18] 吴忠振, 田修波, 李春伟, 等. 高功率脉冲磁控溅射的阶段性放电特征[J]. 物理学报, 2014(17):196-204.
[19] Anders A, Andersson J, Ehiasarian A.High power impulse magnetron sputtering: Current-voltage-time characteristics indicate the onset of sustained self-sputtering[J]. Journal of Applied Physics, 2007, 102:113303.
[20] Konstantinidis S, Dauchot J P, Ganciu M, et al.Influence of pulse duration on the plasma characteristics in high-power pulsed magnetron discharges[J]. Journal of Applied Physics, 2006, 99(1):013307.
[1] 姚婷婷, 仲召进, 李 刚, 汤永康, 杨 勇, 金克武, 沈洪雪, 王天齐, 彭塞奥, 金良茂, 沈鸿烈, 甘治平, 马立云 . 直流射频耦合制备微纳结构 AZO 薄膜及其性能研究[J]. 真空, 2018, 55(6): 64-67.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李得天, 成永军, 张虎忠, 孙雯君, 王永军, 孙 健, 李 刚, 裴晓强. 碳纳米管场发射阴极制备及其应用研究[J]. 真空, 2018, 55(5): 1 -9 .
[2] 周彬彬, 张 建, 何剑锋, 董长昆. 基于 CVD 直接生长法的碳纳米管场发射阴极[J]. 真空, 2018, 55(5): 10 -14 .
[3] 李志胜. 空间环境下超大型红外定标用辐射屏蔽门的研制[J]. 真空, 2018, 55(5): 66 -70 .
[4] 郑 列, 李 宏. 200kV/2mA 连续可调直流高压发生器的设计[J]. 真空, 2018, 55(6): 10 -13 .
[5] 柴晓彤, 汪 亮, 王永庆, 刘明昆, 刘星洲, 干蜀毅. 基于 STM32F103 单片机的单泵运行参数数据采集系统[J]. 真空, 2018, 55(5): 15 -18 .
[6] 孙立志, 闫荣鑫, 李天野, 贾瑞金, 李 征, 孙立臣, 王 勇, 王 健, 张 强. 放样氙气在大型收集室内分布规律研究[J]. 真空, 2018, 55(5): 38 -41 .
[7] 黄 思 , 王学谦 , 莫宇石 , 张展发 , 应 冰 . 液环压缩机性能相似定律的实验研究[J]. 真空, 2018, 55(5): 42 -45 .
[8] 纪 明, 孙 亮, 杨敏勃. 一种用于对月球样品自动密封锁紧的设计[J]. 真空, 2018, 55(6): 24 -27 .
[9] 李民久, 熊 涛, 姜亚南, 贺岩斌, 陈庆川. 基于双管正激式变换器的金属表面去毛刺 20kV 高压脉冲电源[J]. 真空, 2018, 55(5): 19 -24 .
[10] 刘燕文, 孟宪展, 田 宏, 李 芬, 石文奇, 朱 虹, 谷 兵, 王小霞 . 空间行波管极高真空的获得与测量[J]. 真空, 2018, 55(5): 25 -28 .