欢迎访问沈阳真空杂志社 Email Alert    RSS服务

真空 ›› 2020, Vol. 57 ›› Issue (3): 17-20.doi: 10.13385/j.cnki.vacuum.2020.03.04

• 薄膜 • 上一篇    下一篇

溅射功率对铒薄膜微观结构的影响*

张庆芳1,2, 易勇1, 罗江山2   

  1. 1.西南科技大学 材料科学与工程学院,四川 绵阳 621010;
    2.中国工程物理研究院 激光聚变研究中心,四川 绵阳 621900
  • 收稿日期:2019-12-19 发布日期:2020-06-18
  • 通讯作者: 易勇,教授。
  • 作者简介:张庆芳(1991-),女,山西省忻州市人,硕士生。
  • 基金资助:
    等离子体物理重点实验室基金资助项目(6142A0404011017);西南科技大学研究生创新基金项目(19ycx0015)

Effect of Sputtering Power on Microstructure of Er Thin Films Deposited by Magnetron Sputtering

ZHANG Qing-fang1,2, YI Yong1, LUO Jiang-shan2   

  1. 1. School of Material Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China;
    2. Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, China
  • Received:2019-12-19 Published:2020-06-18

摘要: 采用直流磁控溅射方法制备出铒(Er)薄膜,利用X射线衍射仪(XRD)和扫描电子显微镜(SEM)研究了溅射功率对Er薄膜微观结构的影响。结果表明:在溅射功率20W~60W的范围内,Er薄膜均为hcp结构,且呈现明显的(110)晶面择优取向的微观织构。Er薄膜生长呈现柱状晶模式,随着溅射功率的增加,柱状晶组织相应长大,薄膜结构更加致密,表面更为平整,其平均晶粒尺寸7.7nm~9.6nm,表面粗糙度最低2.1nm。磁控溅射方法制备的Er薄膜与电子束蒸发等方法制备的Er薄膜相比具有不同的微观结构特征。

关键词: 磁控溅射, Er薄膜, 微观结构, 择优取向

Abstract: A series of erbium(Er) films were deposited by DC magnetron sputtering method. The effect of sputtering power on the microstructure of the Er thin films was investigated by X-ray diffraction and scanning electron microscope. The experimental results show that all the Er films deposited with the sputtering power of 20W~60W are mainly composed of hcp phase, and present(110) preferred orientation obviously. The Er films grow with typical columnar crystals that increase accordingly with the increasing of sputtering power. The Er films are dense and flat with the average grain size of 7.7nm~9.6nm and surface roughness of 2.1nm. The Er films deposited by magnetron sputtering exhibit different microstructural characteristics from other Er films grown by electron beam vapor.

Key words: magnetron sputtering, Er thin film, microstructure, preferred orientation

中图分类号: 

  • TB742
[1] Dow P A, Briers G W, Dewey M A P, et al. The structure of erbium deuteride targets for neutron generators[J]. Nuclear Instruments and Methods, 1968, 60(3); 293-296.
[2] Banerjee A, Abhilash S R, Umapathy G R, et al.Material engineering to fabricate rare earth erbium thin films for exploring nuclear energy sources[J]. Nuclear Instruments and Methods in Physics Research, A, 2018, 887: 34-39.
[3] Brumbach M T, Ohlhausen J A, Zavadil K R, et al.Activation of erbium films for hydrogen storage[J]. Journal of Applied Physics, 2011, 109: 114911.
[4] Ciria M, Arnaudas J I, Moral A D.Magnetoelastic properties of epitaxial holmium and erbium thin films[J]. Applied Physics Letters, 1998, 72(16); 2044-2046.
[5] Witt J D S, Cooper J F K, Satchell N, et al. Magnetic phases of sputter deposited thin-film erbium[J]. Scientific Reports, 2016, 6: 39021.
[6] Shen H H, Peng S M, Long X G, et al.Effect of thermal annealing on the microstructure and morphology of erbium films[J]. Thin Solid Films, 2012, 520: 6196-6200.
[7] Gu E D, Savaloni H, Player M A, et al.Characterization of evaporated erbium films at various stages of growth[J]. Journal of Physical and Chemistry of Solids, 1992, 53(1): 127-136.
[8] Savaloni H, Player M A.Influence of deposition conditions and of substrate on the structure of UHV deposited erbium films[J]. Vacuum, 1995, 46(2): 167-179.
[9] Shen H H, Peng S M, Long X G, et al.The effect of substrate temperature on the oxidation behavior of erbium thick films[J]. Vacuum, 2012, 86: 1097-1101.
[10] Shen H H, Peng S M, Long X G, et al.Influence of growth parameters on the microstructures of erbium films deposited on Si(111)substrates[J]. Vacuum, 2012, 86: 2075-2081.
[11] Parish C M, Snow C S, Kammler D R, et al.Processing effects on microstructure in Er and ErD2 thin-films[J]. Journal of Nuclear Materials, 2010, 403: 191-197.
[12] Dakhel A A.Characterisation of oxidised erbium films deposited on Si(100)substrates[J]. Materials Chemistry and Physics, 2006, 100: 366-371.
[13] 谢华, 罗江山, 黎军, 等. 纳米晶Cu薄带的单辊法制备及结构分析[J]. 强激光与粒子束, 2006, 18(10): 1639-1642.
[14] Klug H P, Alexander L E.X-ray diffraction procedure for polycrystalline and amorphous materials[M]. New York; John Wiley and Son, 1974: 643-655.
[1] 王晓明, 鄂东梅, 武俊生, 张绪跃, 周艳文. 基于等离子体在磁控溅射增强的模拟*[J]. 真空, 2020, 57(3): 5-6.
[2] 方波, 张林, 蔡飞, 张世宏. 冷作模具钢等离子渗镀CrVN复合涂层摩擦磨损性能研究*[J]. 真空, 2020, 57(2): 33-39.
[3] 王忠连, 任少鹏, 阴晓俊, 王瑞生, 高鹏, 班超, 胡雯雯. 波长渐变滤光片的设计与测试探讨[J]. 真空, 2020, 57(1): 21-25.
[4] 吴厚朴, 田钦文, 田修波, 巩春志. 新型双极性高功率脉冲磁控溅射电源及放电特性研究*[J]. 真空, 2019, 56(6): 1-6.
[5] 廖荣, 邓永健, 王家驹, 赵飞兰, 郑若茜, 刘慧君, 柯嘉聪. 高介电氧化铪薄膜的制备与性能研究*[J]. 真空, 2019, 56(5): 52-55.
[6] 巫仕才, 尚心德. 柔性镀膜材料在电路板行业的应用[J]. 真空, 2019, 56(5): 65-68.
[7] 罗俊尧, 刘光壮, 杨曌, 李保昌, 沓世我. 镍铬硅薄膜电阻层的磁控溅射及湿法刻蚀工艺研究[J]. 真空, 2019, 56(5): 61-64.
[8] 伍醒, 蒋爱华, 程勇. 射频功率对DLC薄膜结构和力学性能的影响[J]. 真空, 2019, 56(4): 34-36.
[9] 王槐乾, 姜宏伟. 磁控溅射反应法制备TiN纳米薄膜[J]. 真空, 2019, 56(4): 37-39.
[10] 刘婵, 王东伟, 李晓敏, 武英桐, 黄美东. 脉冲负偏压对直流磁控溅射碳膜结构和性能的影响[J]. 真空, 2019, 56(2): 69-73.
[11] 王福贞 , 陈大民 , 颜远全 . 弧光放电氩离子清洗源[J]. 真空, 2019, 56(1): 27-33.
[12] 王晓然, 马艳彬, 段 苹, 李如永, 庄碧辉, 崔 敏, 原安娟, 邓金祥. Mg 掺杂浓度对射频磁控溅射制备 Ga2O3 薄膜性质的影响[J]. 真空, 2018, 55(6): 68-72.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李得天, 成永军, 张虎忠, 孙雯君, 王永军, 孙 健, 李 刚, 裴晓强. 碳纳米管场发射阴极制备及其应用研究[J]. 真空, 2018, 55(5): 1 -9 .
[2] 周彬彬, 张 建, 何剑锋, 董长昆. 基于 CVD 直接生长法的碳纳米管场发射阴极[J]. 真空, 2018, 55(5): 10 -14 .
[3] 李志胜. 空间环境下超大型红外定标用辐射屏蔽门的研制[J]. 真空, 2018, 55(5): 66 -70 .
[4] 郑 列, 李 宏. 200kV/2mA 连续可调直流高压发生器的设计[J]. 真空, 2018, 55(6): 10 -13 .
[5] 柴晓彤, 汪 亮, 王永庆, 刘明昆, 刘星洲, 干蜀毅. 基于 STM32F103 单片机的单泵运行参数数据采集系统[J]. 真空, 2018, 55(5): 15 -18 .
[6] 孙立志, 闫荣鑫, 李天野, 贾瑞金, 李 征, 孙立臣, 王 勇, 王 健, 张 强. 放样氙气在大型收集室内分布规律研究[J]. 真空, 2018, 55(5): 38 -41 .
[7] 黄 思 , 王学谦 , 莫宇石 , 张展发 , 应 冰 . 液环压缩机性能相似定律的实验研究[J]. 真空, 2018, 55(5): 42 -45 .
[8] 纪 明, 孙 亮, 杨敏勃. 一种用于对月球样品自动密封锁紧的设计[J]. 真空, 2018, 55(6): 24 -27 .
[9] 李民久, 熊 涛, 姜亚南, 贺岩斌, 陈庆川. 基于双管正激式变换器的金属表面去毛刺 20kV 高压脉冲电源[J]. 真空, 2018, 55(5): 19 -24 .
[10] 刘燕文, 孟宪展, 田 宏, 李 芬, 石文奇, 朱 虹, 谷 兵, 王小霞 . 空间行波管极高真空的获得与测量[J]. 真空, 2018, 55(5): 25 -28 .