欢迎访问沈阳真空杂志社 Email Alert    RSS服务

真空 ›› 2021, Vol. 58 ›› Issue (1): 72-77.doi: 10.13385/j.cnki.vacuum.2021.01.15

• 薄膜 • 上一篇    下一篇

高功率脉冲磁控溅射制备ZnO薄膜的研究进展*

张玉琛, 张海宝, 陈强   

  1. 北京印刷学院等离子体物理与材料实验室,北京 102600
  • 收稿日期:2019-12-02 出版日期:2021-01-25 发布日期:2021-01-26
  • 通讯作者: 张海宝,副教授。
  • 作者简介:张玉琛(1995-),女,河北省石家庄市人,硕士生。
  • 基金资助:
    *国家自然基金项目(Grant Nos 11775028,11875090),北京市自然基金项目(Grant Nos 1192008,KM201510015009); 北京市协同创新(No.CGPT15208)

Review on Semi-Conductive ZnO Thin Film Prepared by HiPIMS

ZHANG Yu-chen, ZHANG Hai-bao, CHEN Qiang   

  1. Lab of Plasma Physics and Materials, Beijing Institute of Graphic Communication, Beijing 102600, China
  • Received:2019-12-02 Online:2021-01-25 Published:2021-01-26

摘要: 氧化锌薄膜材料由于具有高电导率、良好的光学透过率、原料储存丰富、成本低廉的特点,被认为是最具有潜力的透明导电薄膜。特别是其宽禁带(3.37eV)和高达60meV的激子束缚能,使其在环境温度制备同质结发光器件、太阳能电池电子传输层具有巨大的应用前景。然而,传统制备方法难以实现薄膜质量的综合调控,存在p-ZnO稳定性差、制备的薄膜重复性差、组装的器件效能较低等问题。高功率脉冲磁控溅射(HiPIMS)技术具有溅射材料离化率高的特点,非常适合需要离子反应的各类薄膜。当采用HiPIMS制备氧化物、碳化物、氮化物薄膜时,利用其高电离率还可以获得较高的靶离子和掺杂离子,可实现晶格替代、间隙原子等缺陷的形成,制备稳态的材料,如制备稳定p-型半导体材料。本文综述了近年来HiPIMS制备氧化锌薄膜的研究进展,主要是给出HiPIMS制备ZnO薄膜的放电特性和工艺参数的影响,最后展望了HiPIMS制备稳定p-ZnO薄膜的发展方向。

关键词: 高功率脉冲磁控溅射, 氧化锌薄膜, 放电特性, 掺杂

Abstract: Zinc oxide film material is considered to be the most potential transparent conductive film due to its high electrical conductivity, good optical transmittance, abundant raw material storage, and low cost. In particular, its wide band gap(3.37eV)and exciton binding energy up to 60 meV make it possible to prepare homojunction light-emitting devices and solar cell electron transport layers at ambient temperatures with great application prospects. However, it is difficult to achieve comprehensive control of the film quality by the traditional preparation method, and there are problems such as poor stability of p-ZnO, poor repeatability of the as-prepared film, and low efficiency of assembled devices. High-power pulsed magnetron sputtering(HiPIMS)technology has the characteristics of high ionization rate of the sputtering material, which is very suitable for the preparation of complex conductive films such as transparent conductive films and hard films. When HiPIMS is used to deposit oxides, carbides and nitrides, its high ionization rate can be used to obtain higher target ions and doped ions, which can form defects such as element substitution and interstitial atoms, and can be used to prepare stable p-type semiconductor material. In this paper, the research progress of zinc oxide thin films prepared by HiPIMS in recent years is reviewed. In view of the preparation problems of p-ZnO, the discharge characteristics and plasma parameters of ZnO thin films prepared by HiPIMS, undoped ZnO preparation, doped ZnO preparation, and plasma assist ZnO preparation and other aspects are summarized. Finally, the development direction of high-performance, high-quality, high-stability p-ZnO thin film preparation is prospected.

Key words: HiPIMS, ZnO thin film, discharge characteristics, doping and p-type

中图分类号: 

  • TB741
[1] Mang A, Reimann K, St. Rübenacke.Band gaps, crystal-field splitting, spin-orbit coupling, and exciton binding energies in ZnO under hydrostatic pressure[J]. Solid State Communications, 1995, 94(4): 251-254.
[2] Reynolds D C, Look D C, Jogai B.Optically pumped ultraviolet lasing from ZnO[J]. Solid State Communications, 1996, 99(12): 873-875.
[3] Khomyak V V, Ilashchuk M I, Parfenyuk O A, et al.Fabrication and electrical characterization of the anisotype n-ZnO/p-CdTe heterostructures for solar cell applications[J]. Journal of Applied Physics, 2013, 114(22): 223715.
[4] Jee S W, Park S J, Kim J, et al. Efficient three-dimensional nanostructured photoelectric device by Al-ZnO coating on lithography-free patterned Si nanopillars[J]. Applied Physics Letters, 2011, 99(5): 053118-053118-3.
[5] Fujimura N, Kondo K, Takada Y, et al.Al: ZnO top electrodes deposited with various oxygen pressures for ferroelectric(Pb, La)(Zr, Ti)O3 capacitors[J]. Electronics Letters, 2016, 52(3): 230-232.
[6] Tsai M T, Chang H C, Tsai P J. Synthesis and Characterization of AZO Thin Films by Sol-Gel Process: The Influences of Precursors and Dopants[J]. Key Engineering Materials, 2008, 368-372: 326-328.
[7] Shimizu M T, Shiosaki, and A. Kawabata, Growth of c-axis oriented ZnO thin films with high deposition rate on silicon by CVD method[J]. Journal of Crystal Growth, 1982, 57(1): 94-100.
[8] Haga K, Kamidaira M, Kashiwaba Y, et al. ZnO thin films prepared by remote plasma-enhanced CVD method[J]. Journal of Crystal Growth, 2000, 214-215(00): 77-80.
[9] Park S H, Chang J H, Minegishi T, et al.Investigation on the ZnO: N films grown on(0001)and(0001-)ZnO templates by plasma-assisted molecular beam epitaxy[J]. Journal of Crystal Growth, 2009, 311(7): 2167-2171.
[10] Kelly P J, Arnell R D.Magnetron sputtering: a review of recent developments and applications[J]. Vacuum, 2000, 56(3): 159-172.
[11] Naouar M, Ka I, Gaidi M, et al.Growth, structural and optoelectronic properties tuning of nitrogen-doped ZnO thin films synthesized by means of reactive pulsed laser deposition[J]. Materials Research Bulletin, 2014, 57: 47-51.
[12] 叶志镇. 磁控溅射的金属光学薄膜特性研究[J]. 真空科学与技术学报, 1989(5): 335-339.
[13] Subramanyam T K, Naidu B S, Uthanna S.Effect of substrate temperature on the physical properties of DC reactive magnetron sputtered ZnO films[J]. Optical Materials, 1999, 13(2): 239-247.
[14] Singh S, Srinivasa R S, Major S S.Effect of substrate temperature on the structure and optical properties of ZnO thin films deposited by reactive rf magnetron sputtering[J]. Thin Solid Films, 2007, 515(24): 8718-8722.
[15] Bohlmark J, Alami J, Christou C, et al.Ionization of sputtered metals in high power pulsed magnetron sputtering[J]. Journal of Vacuum Science & Technology A Vacuum Surfaces and Films, 2005, 23(1): 18-22.
[16] Loch D A L, Ehiasarian A P. A novel sputtering technique: Inductively Coupled Impulse Sputtering(ICIS)[J]. IOP Conference Series: Materials Science and Engineering, 2012, 39: 012006.
[17] 张志坤. 石墨衬底半导体ZnO和SiC材料生长研究[D]. 大连: 大连理工大学, 2014.
[18] 赵笑昆, 李博研, 张增光. 磁控溅射沉积制备Al掺杂ZnO薄膜的棒状晶粒生长[J]. 材料导报, 2019(S1): 112-115.
[19] 叶志镇. 氧化锌半导体材料掺杂技术与应用[M]. 杭州: 浙江大学出版社, 2009.
[20] 李春伟, 田修波, 巩春志, 等. 不同氩气气压下钒靶HIPIMS放电特性的演变[J]. 表面技术, 45(8): 103-109.
[21] Li Q, Yang L, Wang Z, et al.The superior properties of CrN coatings preparedby high power pulsed reactive magnetron sputtering[J]. AIP Advances, 2020. 10(1): 015125.
[22] 张海涛. 离子源辅助高功率脉冲磁控溅射制备N掺杂p型ZnO薄膜[D]. 北京: 北京印刷学院, 2015.
[23] Wang Z, Li Q, Yuan Y, et al.The semi-conductor of ZnO deposited in reactive HiPIMS[J]. Applied Surface Science, 2019, 494: 384-390.
[24] Bohlmark J, Gudmundsson J T, Alami J, et al.Spatial electron density distribution in a high-power pulsed magnetron discharge[J]. IEEE Transactions on Plasma Science, 2005, 33(2): 346-347.
[25] Gudmundsson J T.The high power impulse magnetron sputtering(HiPIMS)discharge[C]. 第三届微电子及等离子体技术国际会议.
[26] Youssef S, Combette P, Podlecki J, et al.Structural and Optical Characterization of ZnO Thin Films Deposited by Reactive rf Magnetron Sputtering[J]. Crystal Growth & Design, 2009, 9(2): 1088-1094.
[27] 袁燕. 关于高功率脉冲磁控溅射制备ZnO薄膜的研究[D]. 北京: 北京印刷学院, 2017.
[28] Tay C B, Tang J, Nguyen X S, et al.Low temperature aqueous solution route to reliable p-type doping in ZnO with K: growth chemistry, doping mechanism, and thermal stability[J]. The Journal of Physical Chemistry C, 2012, 116(45): 24239-24247.
[29] Lee J S, Cha S N, Kim J M, et al.p-Type Conduction Characteristics of Lithium-Doped ZnO Nanowires[J]. Advanced Materials, 2011, 23(36): 4183-4187.
[30] Balakrishnan L, Gowrishankar S, Premchander P, et al.Dual codoping for the fabrication of low resistive p-ZnO[J]. Journal of Alloys and Compounds, 2012, 512(1): 0-240.
[31] Li W, Kong C, Ruan H, et al.Investigation on the formation mechanism of In-N codoped p-type ZnCdO thin films: experiment and theory[J]. Journal of Physical Chemistry C, 2014, 118(39): 22799-22806.
[32] Senthil Kumar E, Chatterjee J, Rama N, et al.A codoping route to realize low resistive and stable p-type conduction in(Li, Ni): ZnO thin films grown by pulsed laser deposition[J]. ACS Applied Materials & Interfaces, 2011, 3(6): 1974-1979.
[33] 张海涛, 张海宝, 王正铎, 等. N掺p型氧化锌理论的研究进展[J]. 真空, 2016, 53(3): 12-15.
[1] 戴永喜, 杨倩倩, 邓金祥, 孔乐, 刘红梅, 杨凯华, 王吉有. 不同Si含量掺杂的ZTO薄膜的制备与研究[J]. 真空, 2020, 57(6): 23-26.
[2] 张爽, 董闯, 马艳平, 丁万昱. 薄膜的材料特征*[J]. 真空, 2020, 57(4): 11-18.
[3] 岳玲, 石月娟, 马玉山, 刘海波, 周永兴, 张明明, 巩春志, 田修波. 内径20mm导向套筒内壁处理(1):空心阴极氩气放电特性研究*[J]. 真空, 2020, 57(2): 53-57.
[4] 吴厚朴, 田钦文, 田修波, 巩春志. 新型双极性高功率脉冲磁控溅射电源及放电特性研究*[J]. 真空, 2019, 56(6): 1-6.
[5] 李如永, 段苹, 崔敏, 王吉有, 原安娟, 邓金祥. 后退火对射频磁控溅射法制备Mg掺杂Ga2O3薄膜性质的影响[J]. 真空, 2019, 56(3): 37-40.
[6] 王晓然, 马艳彬, 段 苹, 李如永, 庄碧辉, 崔 敏, 原安娟, 邓金祥. Mg 掺杂浓度对射频磁控溅射制备 Ga2O3 薄膜性质的影响[J]. 真空, 2018, 55(6): 68-72.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王杰, 康颂, 董长昆. 微型碳纳米管低压传感器工作性能研究[J]. 真空, 2021, 58(1): 1 -5 .
[2] 李福送, 王文军, 林伟健, 潘亚娟. 智能化螺杆空压机性能检测系统的总体设计*[J]. 真空, 2021, 58(1): 19 -22 .
[3] 杨乃恒. 关于真空除气使用的真空泵情况分析与讨论[J]. 真空, 2021, 58(1): 29 -32 .
[4] 王逊. 真空测量技术及航天应用[J]. 真空, 2021, 58(1): 15 -18 .
[5] 张世伟, 孙坤, 韩峰. 螺杆真空泵设计的常见问题分析[J]. 真空, 2021, 58(1): 23 -28 .
[6] 张以忱. 第二十一讲 真空卷绕镀膜[J]. 真空, 2020, 57(6): 84 -86 .
[7] 柴昊, 贾军伟, 王斌, 李鹏, 崔爽, 冯旭, 李伟, 刘展, 李绍飞, 陈权. 紧凑型微波ECR等离子体源的设计及其特性研究[J]. 真空, 2021, 58(1): 6 -9 .
[8] 张骁, 刘招贤, 孟冬辉, 任国华, 王莉娜, 闫荣鑫. 多孔石墨烯渗氦仿真研究*[J]. 真空, 2021, 58(1): 10 -14 .
[9] 蔡潇, 曹曾, 张炜, 李瑞鋆, 黄勇. HL-2M装置真空室预抽气系统的研制*[J]. 真空, 2021, 58(1): 33 -37 .
[10] 朱志鹏, 秦彬玮, 张英莉, 岳向吉, 巴德纯. 稀薄气体流动的粒子图像测速实验研究*[J]. 真空, 2021, 58(1): 38 -44 .