欢迎访问沈阳真空杂志社 Email Alert    RSS服务

真空 ›› 2022, Vol. 59 ›› Issue (2): 48-54.doi: 10.13385/j.cnki.vacuum.2022.02.10

• 薄膜 • 上一篇    下一篇

不同厚度Cr/CrN粘结层对铜合金表面碳基薄膜性能影响的研究*

徐天杨1,2, 李振东2, 詹华1, 司彦龙1, 刘继彬1, 汪瑞军1,2   

  1. 1.中国农业机械化科学研究院,北京 100083;
    2.北京金轮坤天特种机械有限公司,北京 100083
  • 收稿日期:2021-11-10 出版日期:2022-03-25 发布日期:2022-04-14
  • 通讯作者: 汪瑞军,博士生导师,研究员。
  • 作者简介:徐天杨(1994-),男,黑龙江省哈尔滨市人,博士研究生。

Effects of Cr/CrN Interlayer Thickness on Properties of Carbon-based Films Prepared on Copper Alloy

XU Tian-yang1,2, LI Zhen-dong2, ZHAN Hua1, SI Yan-long1, LIU Ji-bin1, WANG Rui-jun1,2   

  1. 1. Chinese Academy of Agricultural Mechanization Sciences, Beijing 100083, China;
    2. Beijing Golden Wheel Special Machine Co., Ltd., Beijing 100083, China
  • Received:2021-11-10 Online:2022-03-25 Published:2022-04-14

摘要: 为提高铜合金表面硬质薄膜的抗冲击性能,在KK3铜合金表面制备了不同厚度Cr/CrN粘结层的铬掺杂类金刚石(Cr-DLC)碳基薄膜,采用扫描电镜、拉曼光谱仪、纳米压痕仪和连续冲击试验机分别分析了 Cr-DLC薄膜的截面形貌、微观结构、力学性能以及抗冲击性能。结果表明:Cr-DLC薄膜的残余应力、弹性模量、结合强度及抗冲击性能等与Cr/CrN粘结层厚度存在密切关系;铜合金表面Cr-DLC薄膜的残余应力随着粘结层厚度的增加先降后升,当粘结层厚度为1.01μm时,薄膜的残余应力最小,仅为-0.47GPa,硬度与弹性模量分别为11.68GPa和144.54GPa;薄膜的结合强度随粘结层厚度的增加呈先升后降的趋势,当粘结层厚度为1.01μm时结合强度最高,达到了50N;经30000次连续冲击试验后,不同厚度Cr/CrN粘结层的Cr-DLC薄膜样品表面均出现冲击坑,且中心区域均出现一定面积的薄膜剥落,其中粘结层厚度为1.01μm的Cr-DLC薄膜样品冲击坑体积最小,仅为9.241×106μm3,表现出最好的抗冲击性能。综上,针对铜合金表面不同厚度Cr/CrN粘结层的Cr-DLC碳基薄膜,当Cr/CrN粘结层厚度为1.01μm,总厚度不大于8μm时,其抗冲击性能最好。

关键词: 铜合金, 碳基薄膜, 抗冲击性能, 粘结层

Abstract: In order to improve the poor impact resistance of thin films prepared on copper alloy, chromium doped diamond-like carbon(Cr-DLC) films with Cr/CrN interlayer of different thickness were prepared on KK3 copper alloy. Cross-section morphology, microstructure,mechanical properties and impact resistance of Cr-DLC films were studied by scanning electron microscope, Raman spectra, nanoindentation and repetitive impact tester, respectively. The results illustrate that the residual stress, elastic modulus, adhesion strength and impact resistance of Cr-DLC films have close connections with thickness of Cr/CrN interlayer. Residual stress of Cr-DLC coated copper alloy decreases first and then increases with the interlayer thickness increasing, which reaches the least value of -0.47GPa when the interlayer thickness was 1.01μm, and the hardness and elastic modulus of Cr-DLC films are 11.68GPa and 144.54GPa, respectively. Adhesion strength increases first and then decreases with the increase of interlayer thickness, which reaches the maximum of 50N when the interlayer is 1.01μm. Impact craters are generated on the surface of all Cr-DLC coated samples with Cr/CrN interlayer of different thickness after repetitive impact test of 30000 times, a certain area of film spallation is observed at the central zone of impact craters, and the sample with Cr/CrN interlayer of 1.01μm has the least indentation volume of 9.241×106μm3, which shows the best impact resistance. In summary, for Cr-DLC films with Cr/CrN interlayer prepared on copper alloy,when the thickness of Cr/CrN interlayer is 1.01μm and the whole thickness of the films is less than 8μm, the films show the best impact resistance.

Key words: copper alloy, carbon-based film, impact resistance, interlayer

中图分类号: 

  • TG178
[1] LU Y M, HUANG G J, XI L.Tribological and mechanical properties of the multi-layer DLC film on the soft copper substrate[J]. Diamond and Related materials, 2019, 94: 21-27.
[2] 李安, 陈庆春, 王云峰, 等. 不锈钢、铝、铜合金表面超厚类金刚石薄膜的制备及其摩擦学性能研究[J]. 材料保护, 2020, 53(5): 63-67+74.
[3] BRAKE B D, LISKIEWICZ T W, BIRD A, et al.Micro-scale impact testing-A new approach to studying fatigue resistance in hard carbon coatings[J]. Tribology International, 2020, 149: 105732.
[4] LAWES S D A, HAINSWORTH S V, FITZPATRICK M E. Impact wear testing of diamond-like carbon films for engine valve-tappet surfaces[J]. Wear, 2010, 268(11-12): 1303-1308.
[5] 王璋, 蔡振兵, 孙阳, 等. 基于冲击动能控制的Cr-DLC涂层动力学响应和磨损行为[J]. 中国表面工程, 2017, 30(4): 78-86.
[6] BRAKE B D, MCMASTER S J, LISKIEWICZ T W, et al.Influence of Si-and W-doping on micro-scale reciprocating wear and impact performance of DLC coatings on hardened steel[J]. Tribology International, 2021, 160: 107063.
[7] BERNOULLI D, RICO A, WYSS A, et al.Improved contact damage resistance of hydrogenated diamond-like carbon(DLC) with a ductile α-Ta interlayer[J]. Diamond & Related Materials, 2015, 58: 78-83.
[8] 李振东. 高速重载轴承长寿命薄膜的低温制备与性能研究[D]. 北京: 中国农业机械化科学研究院, 2017.
[9] 詹华. 海洋大气环境用元素掺杂碳基薄膜结构设计与制备[D]. 北京: 中国农业机械化科学研究院, 2018.
[10] ANTONOV M, HUSSAINOVA I, SERGEJEV F, et al.Assessment of gradient and nanogradient PVD coatings behaviour under erosive, abrasive and impact wear conditions[J]. Wear, 2009, 267(5-8): 898-906.
[11] HOLMBERG K, MATTHEWS A, RONKAINEN H.Coatings tribology-contact mechanisms and surface design[J]. Tribology International, 1998, 31(1-3): 107-120.
[12] VOEVODIN A A, BANTLE R, MATTHEWS A.Dynamic impact wear of TiCxNy and Ti-DLC composite coatings[J]. Wear, 1995, 185: 151-157.
[13] BANTLE R, MATTHEWS A. Investigation into the impact wear behaviour of ceramic coatings[J]. Surface and Coatings Technology, 1995, 74-75: 857-868.
[14] SINGH R K, ZHOU Z F, LI L W Y, et al. Design of functionally graded carbon coatings against contact damage[J]. Thin Solid Films, 2010, 518(20): 5769-5776.
[15] KNOTEK O, BOSSERHOFF B, SCHREY A, et al. A new technique for testing the impact load of thin films: The coating impact test[J]. Surface and Coatings Technology, 1995, 54-55: 102-107.
[16] WANG X Y, SUI X D, ZHANG S T, et al.Effect of deposition pressures on uniformity, mechanical and tribological properties of thick DLC coatings inside a long pipe prepared by PECVD method[J]. Surface and Coatings Technology, 2019, 375: 150-157.
[17] VALENCIA F J, SANTIAGO J, GONZÁLEZ R I, Nanoindentation of amorphous carbon: A combined experimental and simulation approach[J]. Acta Materialia, 2021, 203: 116485.
[18] CHARITIDIS C A.Nanomechanical and nanotribological properties of carbon-based thin films: A review[J]. International Journal of Refractory Metals & Hard Materials, 2010, 28(1): 51-70.
[19] HOLMBERG K, RONKAINEN H, LAUKKANEN A, Residual stresses in TiN, DLC and MoS2 coated surfaces with regard to their tribological fracture behavior[J]. Wear, 2009, 267: 3107-3110.
[20] XIE Z H, SINGH R, BENDAVID A, et al.Contact damage evolution in a diamond-like carbon(DLC) coating on a stainless steel substrate[J]. Thin Solid Films, 2007, 515: 3196-3201.
[1] 钟利, 但敏, 沈丽如, 金凡亚, 陈美艳, 刘彤, 邓稚. 霍尔源溅射清洗工艺对离子镀TiN涂层结合性能的影响[J]. 真空, 2020, 57(6): 5-6.
[2] 刘灵云, 林松盛, 王迪, 李风, 代明江, 石倩, 韦春贝. CrAlN抗冲蚀涂层制备及性能研究*[J]. 真空, 2020, 57(2): 40-46.
[3] 王迪, 林松盛, 刘灵云, 杨洪志, 蒋百灵, 薛玉娜, 周克崧. 表面处理技术对钛合金疲劳性能影响的研究进展*[J]. 真空, 2019, 56(6): 36-42.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李得天, 成永军, 张虎忠, 孙雯君, 王永军, 孙 健, 李 刚, 裴晓强. 碳纳米管场发射阴极制备及其应用研究[J]. 真空, 2018, 55(5): 1 -9 .
[2] 郑 列, 李 宏. 200kV/2mA 连续可调直流高压发生器的设计[J]. 真空, 2018, 55(6): 10 -13 .
[3] 纪 明, 孙 亮, 杨敏勃. 一种用于对月球样品自动密封锁紧的设计[J]. 真空, 2018, 55(6): 24 -27 .
[4] 宋青竹, 张哲魁, 孙足来, 鄂东梅. 大型钛合金熔铸技术——真空电弧凝壳精铸设备进展[J]. 真空, 2018, 55(5): 58 -61 .
[5] 阮庆东, 蒲世豪, 陈 常, 魏于苹. 一种新型高能离子注入系统的加速电源研制[J]. 真空, 2018, 55(6): 14 -18 .
[6] 王晓冬, 吴虹阅, 张光利, 李 赫, 孙 浩, 董敬亮, TU Jiyuan. 计算流体力学在真空技术中的应用[J]. 真空, 2018, 55(6): 45 -48 .
[7] 李忠仁, 明 悦, 朱一鸣. 电阻加热真空高温石墨化炉的功率计算[J]. 真空, 2018, 55(6): 73 -75 .
[8] 尹沙沙, 彭润玲, 韦 妍, 曹 蔚, 王 宁. 真空冷冻干燥法制备纳米二硫化钼的实验研究[J]. 真空, 2018, 55(6): 80 -83 .
[9] 陈 博, 杨 飞, 李建昌. 柔性薄膜材料疲劳失效研究[J]. 真空, 2019, 56(1): 20 -26 .
[10] 张以忱. 第二十讲 真空离子镀膜[J]. 真空, 2019, 56(2): 78 -80 .