欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2021, Vol. 58 ›› Issue (3): 65-70.doi: 10.13385/j.cnki.vacuum.2021.03.13

• Measurement and Control • Previous Articles     Next Articles

Theoretical Calculation of Ejectors and the Development of Software

LI Xin1,2, LONG Xin-ping1,2, CHENG Huai-yu1,2, LIU Qi3   

  1. 1. Hubei Key Laboratory of Waterjet Theory and New Technology,Wuhan University,Wuhan 430072,China;
    2. School of Power and Mechanical Engineering,Wuhan University,Wuhan 430072,China;
    3. China Ship Development and Design Center,Wuhan 430064,China
  • Received:2020-04-25 Online:2021-05-25 Published:2021-06-01

Abstract: In order to improve the design efficiency of ejectors, the calculation method of ejector structure size was systematically investigated, and a software was designed by VB. NET based on the combination of the classic theory of ejectors and the excellent design models of both domestic and foreign countries. The software is mainly composed of four parts of modules, which are the input/output module, the eject coefficient calculation module, the structural design module and the performance curve drawing module. This software has a wide range of application because it can not only resolve the ejector of three different compression ratios, but also deal with the two-phase ejector of gas-liquid and gas-solid operating condition, which greatly enriched the function of the software. The interface of the software is simple and easy to operate, leading to the improvement of the calculation accuracy and the design efficiency of ejector structure.

Key words: ejector, structural design, VB.NET, design software, eject-coefficient

CLC Number: 

  • TH45
[1] 索科洛夫. 喷射器[M]. 北京: 科学出版社, 1985.
[2] HUANG B J, CHANG J M.Empirical Correlation for Ejector Design[J]. International Journal of Refrigeration, 1999, 22: 379-388.
[3] 陆宏圻. 喷射技术理论及应用[M]. 武汉: 武汉大学出版社, 2004: 10-35.
[4] 杨雪龙, 龙新平, 康勇, 等. 扩散器结构与喉管长度对喷射泵性能的影响[J]. 哈尔滨工业大学学报, 2014, 46(1): 111-115.
[5] ZHU Y H, CAI W J.Numerical investigation of geometry parameters for design of high performance ejector[J]. Applied Thermal Engineering, 2009, 29: 898-905.
[6] 丁学俊, 张云波. 蒸汽喷射器热力设计[J].流体机械, 2009, 37(4): 22-24,37.
[7] 王红霞. 气体喷射器的设计及数模拟研究[D]. 南京: 南京理工大学, 2009.
[8] SUN D W, EAMES I W.Recent developments in the design theories and applications of ejectors[J]. Journal of the Institute of Energy, 1995, 68: 65-79.
[9] EAMES I W.A new prescription for the design of supersonic jet-pumps: the constant rate of momentum change method[J]. Applied Thermal Engineering, 2002, 22: 121-131.
[10] 徐鑫. 喷射器内部流动及设计方法的研究[D]. 武汉: 华中科技大学, 2012.
[11] 张琦, 庞世充, 王汝武. 蒸汽喷射器理论计算及设计软件开发[J]. 流体机械, 2012, 40(8): 40-43.
[12] 沈胜强. 喷嘴可调式蒸汽喷射器的性能计算[J]. 热科学与技术, 2010, 9(1): 64-69.
[13] CHAIWONGSA P, WONGWISES S.Experimental study on R-134a refrigeration system using a two-phase ejector as an expansion device[J]. Applied Thermal Engineering 2008, 28: 467-77.
[14] YADAV R L, PATWARDHAN A W.Design aspects of ejectors: Effects of suction chamber geometry[J]. Chem Eng Sci, 2008, 63: 3886-3897.
[15] 陈伟雄. 喉嘴距对喷射器性能影响的实验研究[J]. 中国科学院大学学报, 2016, 33(2): 253-257.
[16] 张博. 二维流动模型用于喷射器关键结构设计分析[J]. 大连理工大学学报, 2004, 44(3): 388-391.
[17] 朱春元. 喷射器的性能优化分析[D]. 天津: 天津商业大学, 2015.
[18] 李海军. 喷射器性能, 结构及特殊流动现象研究[D]. 大连: 大连理工大学, 2004.
[1] HAN Yu, WANG Xiao-dong, GUO Li-xin, LI Cui-ling, WANG Cheng-xiang, ZHANG Guang-li. Experimental Study on the Influence of the Constant Diameter on the Performance of the Steam Ejector [J]. VACUUM, 2019, 56(5): 30-33.
[2] LUO Wei. Application and analysis of energy saving reform of condenser vacuum system [J]. VACUUM, 2018, 55(6): 37-41.
[3] WANG Xiao-dong, WU Hong-yue, ZHANG Guang-li, LI He, SUN Hao, DONG Jing-liang, TU Ji-yuan. Computational fluid dynamics approach and its applications in vacuum technology [J]. VACUUM, 2018, 55(6): 45-48.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!