欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2024, Vol. 61 ›› Issue (6): 43-47.doi: 10.13385/j.cnki.vacuum.2024.06.08

• Measurement and Control • Previous Articles     Next Articles

Research on Water Vapor Measurement and Removal Methods for the Spacecraft Sealed Cabin

WU Yue1, XUE Cui-ping2, XU Zhong-xu1, WEI Xi1, CAO Zheng-bin1, NIU Tong1   

  1. 1. Beijing Institute of Spacecraft Environment Engineering, Beijing 100094, China;
    2. School of Sciences, Northeastern University, Shenyang 110819, China
  • Received:2024-01-22 Online:2024-11-25 Published:2024-11-29

Abstract: The sealed cabin of the spacecraft is located inside the vacuum chamber during the vacuum thermal test, and the conventional water vapor measurement methods and water removal methods cannot meet the requirements of sealed cabin. In this paper, a set of measuring device suitable for measuring the moisture content in the sealed cabin is designed to solve the problem of water removal in the vacuum thermal test of the spacecraft sealed cabin, which can meet the requirements for measuring the water vapor in vacuum environment through calibration. The as-designed sealed cabin water removal system is connected to the sealed cabin through a bidirectional sealing flange, which can complete the water removal of the sealed cabin outside the vacuum chamber. The test result shows that this water removal method can ensure that the dew point temperature of the gas in sealed cabin is below 0 ℃ during the vacuum thermal test.

Key words: spacecraft sealed cabin, vacuum thermal test, water vapor measurement, water removal technology

CLC Number:  V416.6

[1] 张加迅, 李劲东, 孙耀赤. 卫星密封舱湿度控制技术的应用研究[J]. 中国空间科学技术, 2006, 26(3): 47-51.
[2] 范宇峰, 黄家荣, 范含林. 航天器密封舱湿度控制技术综述[J]. 航天器工程, 2007, 16(4): 89-93.
[3] 程文龙, 赵锐, 黄家荣, 等. 载人航天器独立飞行时密封舱内流动换热及热湿分析研究[J]. 宇航学报, 2009, 30(6): 2410-2416.
[4] 刘东晓, 满广龙, 曹剑峰, 等. 载人航天器密封舱温湿度独立控制方法及实验研究[J]. 航天器环境工程,2014, 31(4): 386-391.
[5] 于新刚, 满广龙, 范宇峰. 载人飞船密封舱热舒适性评价[J]. 载人航天, 2014, 20(5): 461-464.
[6] 赵建贺, 张健, 王鑫哲, 等. 载人航天器密封舱内除湿研究[J]. 航天器环境工程, 2015, 32(4): 381-384.
[7] 金岩. 载人航天器密封舱内结露的原因及对策[J]. 航天器环境工程, 2013, 30(2): 184-187.
[8] 姜军, 刘强. 被动吸水材料在载人航天器湿度控制中的应用研究[J]. 宇航学报, 2008, 29(3): 1080-1083.
[9] 王磊, 马重芳, 贾宏. 调湿涂层性能试验研究[J]. 装备环境工程,2012, 9(3): 11-12.
[10] KRISHNAMURTHY A, ADEBAYO B, GELLES T, et al.Abatement of gaseous volatile organic compounds: a process perspective[J]. Catalysis Today, 2020, 350: 100-119.
[11] GELLES T, KRISHNAMURTHY A, ADEBAYO B, et al.Abatement of gaseous volatile organic compounds: a material perspective[J]. Catalysis Today, 2020, 350: 3-18.
[12] HUANG S S, DENG W, ZHANG L, et al.Adsorptive properties in toluene removal over hierarchical zeolities[J]. Microporous and Mesoporous Materials, 2020,302: 110204.
[13] MA Y, WU Q M, XIE Y Q, et al.Recent advances in organotemplate-free synthesis of zeolites[J]. Current Opinion in Green and Sustainable Chemistry, 2020,25: 100363.
[14] 黄家荣, 范宇峰, 刘炳清, 等. 神舟七号飞船气闸舱热试验方法[J]. 宇航学报, 2009, 30(5): 2086-2091.
[15] 范宇峰, 刘炳清, 黄家荣, 等.气闸舱泄复压热力过程研究[J].宇航学报, 2013, 34(2): 293-298.
[16] 朱光辰, 贾世锦. 出舱活动的地面试验验证[J]. 载人航天, 2009, 15(3): 48-53.
[17] MOELLER T M, SMITH L M, COLLINS F G, et al.Measurement of the accumulation of water ice on optical components in cryogenic vacuum environments[J]. Optical Engineering, 2012, 51(11): 115601.
[18] 张世伟, 张志军, 鄂东梅, 等.液体真空蒸发冻结过程的动力学研究[J]. 真空科学与技术学报, 2009, 29(6): 619-623.
[19] 彭润玲, 徐成海, 张世伟, 等.抽真空自冻结实验研究[J]. 真空科学与技术学报, 2007, 27(5): 450-453.
[20] 王朝晖, 李志达, 张巍, 等.湿度测量及校准方法[J]. 计测技术, 2006, 26(Z1): 96-101.
[21] 武越, 许忠旭, 裴一飞. 航天器密封舱压力模拟控制方法研究[J].真空科学与技术学报, 2014, 34(10): 1076-1080.
[22] 武越, 鄂东梅, 杜鹏, 等. 航天器密封舱连接处漏率检测方法[J].真空, 2018, 55(6): 1-4.
[1] QI Song-song, JING Jia-rong, DONG De-sheng, DONG Dong, WANG Fei, ZHANG Rui. Design of Pressure Regulating System for Vacuum Thermal Test Equipment [J]. VACUUM, 2019, 56(4): 62-64.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[4] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[5] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .
[6] XU Fa-jian, WANG Hai-lei, ZHAO Cai-xia, HUANG Zhi-ting. Application of chemical gases vacuum-compression recovery system in environmental engineering[J]. VACUUM, 2018, 55(5): 29 -33 .
[7] XIE Yuan-hua, HAN Jin, ZHANG Zhi-jun, XU Cheng-hai. Discussion on present situation and development trend of vacuum conveying[J]. VACUUM, 2018, 55(5): 34 -37 .
[8] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[9] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[10] CHANG Zhen-dong, MU Ren-de, HE Li-min, HUANG Guang-hong, LI Jian-ping. Reflectance spectroscopy study on TBCs prepared by EB-PVD[J]. VACUUM, 2018, 55(5): 46 -50 .