欢迎访问沈阳真空杂志社 Email Alert    RSS服务

真空 ›› 2019, Vol. 56 ›› Issue (1): 34-38.doi: 10.13385/j.cnki.vacuum.2019.01.07

• • 上一篇    

三层热壁金属有机化学气相外延流场计算机模拟

李 琳 1,李成明 2,3,杨功寿 3,胡西多 4,杨少延 2,5,苏 宁 6   

  1. 1.长沙(星沙)经济技术开发区毛塘工业园区湖南信息学院,湖南 长沙 410151;2.中国科学院半导体研究所,中国 科学院半导体材料科学重点实验室,北京 100083;3.北京大学东莞光电研究院,广东 东莞 523808;4.东莞理工学 院电子与智能化学院,广东 东莞 523000;5.材料与光电研究中心,中国科学院大学,北京 100049; 6.沈阳真空技术研究所有限公司,辽宁 沈阳 110042
  • 收稿日期:2018-11-20 出版日期:2019-01-25 发布日期:2019-02-19
  • 通讯作者: 李成明,副研究员。
  • 作者简介:李琳(1974-),女,湖南省衡山市人,硕士,副教授。
  • 基金资助:
    国家重点研发计划(No. 2017YFB0404201),国家自然科学基金项目(Nos. 61774147,61504128),广东省省级 科技项目,东莞市产学研合作项目以及东莞市重大科技项目(项目编号:2013B090500004,2014509130207 以 及 2014215130),广东省财政补贴项目(粤财工【2015】639 号)。

Numeric simulation of three-layer hot-wall metal organic chemical vapor deposition (MOCVD) flow fields

LI Lin 1, LI Cheng-ming 2,3, YANG Gong-shou 3, HU Xi-duo 4, YANG Shao-yan 2,5, SU Ning6   

  1. 1.Hunan Institute of Information Technology, Changsha 410151, China; 2.Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China; 3.Dongguan Institute of Opto-Electronics Peking University, Dongguan 523808, China; 4.School of Electronic Engineering, Dongguan University of Technology, Dongguan 523808, China; 5.Center of Materials Science and Optoelectronics Engineering,University of Chinese Academy of Sciences, Beijing 100049, China; 6.Shenyang Vacuum Technology Institute Co.,Ltd., Shenyang 110042, China
  • Received:2018-11-20 Online:2019-01-25 Published:2019-02-19

摘要: 本文对三层热壁水平流金属有机化学气相沉积(MOCVD)真空反应腔的设计以及最终流场分 布都进行了理论模拟。在选择优化喷管排布基础上,在衬底托盘、衬底四周底壁,以及衬底所在区域上壁 临近区域范围加热,形成局部热壁外延真空反应腔体。此外,对于真空腔体设计,顶层与底层流动速度, 都进行细致研究,确保在材料生长区域的壁面,反应前驱物源气体保持在稳定且无漩涡流动状态,并使反 应物主要分布在衬底位置处,有效提高反应物利用率,并避免在腔壁等处发生反应,最后进行热壁 MOCVD 材料生长,得到厚度分布比较均匀,x 射线双晶衍射的半峰全宽(FWHM)为 149.8 弧度秒,表明生 长出质量良好的氮化镓(GaN)薄膜单晶材料。

关键词: 金属有机化学气相沉积, 反应腔体, 热壁, 喷管, 数值模拟

Abstract: Numeric simulation of the three-layer hot-wall metal-organic chemical vapor deposition(MOCVD)vacuum reactor was performed, including the design and the final flow field distribution. In this article, on the basis of the optimization array of the nozzles, the substrates susceptor, the near ceiling wall around the susceptor and the wall above the susceptor were all heated and the partial hot-wall reactor was formed. Furthermore, the design of the vacuum reactor, the flowing speed of the top layer and the bottom layer were all investigated in detail. As a result, we can ensure that in the material growth region, the precursors and the carrier gases were all kept in a stable flow states without swirls and the precursors were concentrated on the position of the substrates, which increased the utilization of the reactive materials effectively and the reaction on the other wall was reduced largely. At last, materials was grown in this hot-wall MOCVD reactor and the thickness of the film was averaged. The FWHM of XRD rocking curves for the wafer is 149.8 arcsecond, indicating that good materials quality was gained.

Key words: MOCVD, reactor, hot-wall, nozzle, numerical simulation

中图分类号: 

  • O484.1
[1] 王晓冬, 吴虹阅, 张光利, 李 赫, 孙 浩, 董敬亮, TU Jiyuan. 计算流体力学在真空技术中的应用[J]. 真空, 2018, 55(6): 45-48.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!