欢迎访问沈阳真空杂志社 Email Alert    RSS服务

真空 ›› 2021, Vol. 58 ›› Issue (2): 6-9.doi: 10.13385/j.cnki.vacuum.2021.02.02

• 薄膜 • 上一篇    下一篇

基于PCVD光纤预制棒微波系统的仿真与应用

丁旭1, 罗文勇2, 黄文俊2, 伍淑坚2, 余志强2   

  1. 1.武汉邮电科学研究院,湖北 武汉 430074;
    2.烽火通信科技股份有限公司,湖北 武汉 430074
  • 收稿日期:2020-01-06 出版日期:2021-03-25 发布日期:2021-04-09
  • 通讯作者: 罗文勇,高级工程师。
  • 作者简介:丁旭(1994-)男,安徽六安人,硕士生。

Simulation and Application of PCVD Fiber Precast Rod Microwave System

DING Xu1, LUO Wen-yong2, HUANG Wen-jun2, WU Shu-jian2, YU Zhi-qiang2   

  1. 1. Wuhan Research Institute of Post and Telecommunications, Wuhan 430074, China;
    2. FiberHome Telecommunication Technologies Co., Ltd., Wuhan 430074, China
  • Received:2020-01-06 Online:2021-03-25 Published:2021-04-09

摘要: 随着5G、云计算、数据中心等概念的提出,对光纤技术不仅提出了量的需求,也要求光纤技术发展需满足新应用的需求。光纤装备技术是光纤技术的基石,其中采用等离子体装备技术可以实现多种大容量新型光纤技术的开发,具有广泛的应用前景和重大的研究价值。本文通过相关仿真,设计出了一种基于等离子化学气相沉积(PCVD)光纤预制棒微波系统的装置,并通过该装置成功制造了光纤预制棒,验证了设计的微波系统装置具有很好的可行性,具有一定的经济价值与发展前景。

关键词: 光纤预制棒, 微波放电系统, 微波仿真, 光纤测试

Abstract: With the introduction of 5G, cloud computing, data center and other concepts, the optical fiber technology not only puts forward the demand of quantity, but also requires the development of optical fiber technology to meet the needs of new applications. Fiber equipment technology is the cornerstone of optical fiber technology, in which plasma equipment technology can realize the development of a variety of large-capacity new optical fiber technology, with a wide range of application prospects and significant research value. Through the relevant simulation, a device based on PCVD fiber precast rod microwave system is designed. The fiber precast rod is successfully manufactured by the device, which proves that the design of microwave system device has a good feasibility. It has certain economic value and development prospects.

Key words: fiber precast rods, microwave discharge systems, microwave simulation, fiber testing

中图分类号: 

  • TN61
[1] 沈建平. 保偏光纤预制棒的加工研究[D]. 长春: 长春理工大学, 2012.
[2] 侯卓玮. 基于以太网的数字相机数据光纤传输技术研究[D]. 西安: 西安光学精密机械研究所, 2014.
[3] 陈曦. 基于表面等离激元的新型光纤特性研究[D]. 北京: 北京邮电大学, 2014.
[4] 杨超, 程勋, 吴磊. 超高密度超大芯数新型光纤带光缆研究进展[J]. 现代传输, 2019, (4): 42-46.
[5] 彭楚宇, 喻煌, 郭浩, 等. 多芯光纤的性能及研究进展[J]. 通信技术, 2019, 52(12): 2846-2850.
[6] 余志强, 罗文勇, 伍淑坚, 等. 60μm细径保偏光纤技术研究[J]. 光通信研究, 2019, (3): 22-25.
[7] 戚卫, 罗文勇, 杜城, 等. 光子轨道角动量传输光纤技术[J]. 光通信研究, 2017, (6): 62-65.
[8] HU Y L, TIAN X, FAN Q P, et al.Fabrication and characterization of iron and iron carbide thin films by plasma enhanced pulsed chemical vapor deposition[J]. 等离子体科学和技术(英文版), 2019, 21(10): 54-60.
[9] 杨浩, 闫二艳, 郑强林, 等. 一种准光反射聚焦微波放电大气等离子体装置[J]. 强激光与粒子束, 2019, 31(5): 10-14.
[10] 刘冠宇. MCVD制造光纤预制棒的沉积理论与光纤拉制实验研究[D]. 哈尔滨: 哈尔滨工程大学. 2013.
[11] LIU W Z, ZHENG Q T, HU M C, et al.Study of generation characteristics of glow-type atmospheric-pressure plasma jet based on DC discharge in air[J]. 等离子体科学和技术(英文版), 2019, 21(12): 40-49.
[12] 烽火通信科技股份有限公司. 一种利用等离子体技术的光纤预制棒加工设备: CN03157394. 0[P].2004-04-21.
[13] 长飞光纤光缆股份有限公司. 一种大功率等离子体微波谐振腔: CN201510734968. 1[P].2016-01-13.
[14] 长飞光纤光缆股份有限公司. 一种双腔型等离子体微波谐振腔: CN201510985197. 3[P].2016-04-20.
[15] 长飞光纤光缆股份有限公司. 一种双腔型等离子体微波谐振腔: CN201510985197. 3[P].2019-01-25.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!