欢迎访问沈阳真空杂志社 Email Alert    RSS服务

真空 ›› 2021, Vol. 58 ›› Issue (2): 66-75.doi: 10.13385/j.cnki.vacuum.2021.02.14

• 真空应用 • 上一篇    下一篇

微电推进系统研制及应用现状*

田立成, 王尚民, 高俊, 孟伟, 田恺, 吴辰宸   

  1. 兰州空间技术物理研究所 真空技术与物理重点实验室,兰州 730000
  • 收稿日期:2019-01-02 出版日期:2021-03-25 发布日期:2021-04-09
  • 作者简介:田立成( 1983-),男,山东省泰安市人,硕士,高级工程师。
  • 基金资助:
    *甘肃省科技计划资助( No.18JR3RA412)

Development and Application of Micro-electric Propulsion System

TIAN Li-cheng, WANG Shang-min, GAO Jun, MENG Wei, TIAN Kai, WU Chen-chen   

  1. Science and Technology on Vacuum Technology and Physics Laboratory, Lanzhou Institute of Physics, Lanzhou 730000, China
  • Received:2019-01-02 Online:2021-03-25 Published:2021-04-09

摘要: 200kg以下的微小卫星的轨道维持、姿态控制、阻尼补偿、编队飞行等任务对微电推进技术及产品提出了明确的应用需求,不同类型的微电推进在不同功率范围内有着各自的优势。本文对中国微小卫星12U立方星LPPT-5脉冲等离子体电推进系统、150kg小卫星LPPT-25脉冲等离子体电推进系统、6U立方星LVAT-1真空弧电推进系统、引力波探测卫星LCT-10胶体电推进系统、低轨小卫星星座LHT-40霍尔电推进系统方案及研制进展进行了论述,最后对正在研制的LRIT-40射频离子电推进系统与LECR-50微波离子电推进系统研制情况及后续应用进行了展望。

关键词: 微小卫星, 微电推进系统, 研制及应用

Abstract: Orbit maintenance, attitude control, damping compensation, formation flight and other tasks of micro-satellites under 200kg put forward clear application requirements for micro-electric propulsion technology and products. Different types of micro-electric propulsion have their own advantages in different power ranges. The scheme and development of LPPT-5 pulse plasma electric propulsion system for 12U standard cubic satellite, LPPT-25 pulse plasma electric propulsion system for 150kg small satellite, LVAT-1 vacuum arc electric propulsion system for 12U standard cubic satellite, LCT-10 colloid electric propulsion system for gravitational wave detection satellite and LHT-40 hall electric propulsion system for low orbit small satellite constellation are discussed in this paper. In the end, the recent progress and future application of LRIT-40 radio frequency ion electric propulsion system and LECR-50 microwave ion electric propulsion system are prospected.

Key words: micro-satellite, micro-electric propulsion system, cevelopment and application

中图分类号: 

  • V439+.4
[1] 田立成, 王小永, 张天平. 空间电推进应用及技术发展趋势[J]. 火箭推进, 2015, 41(3): 7-14.
[2] 黄良甫. 电推进系统发展概况[J]. 真空与低温. 2005, 11(1): 1-8.
[3] MOLINA-CABRER A P, HERDRICH G, LAU M, et al. Pulsed plasma thrusters: a worldwide review and long yearned classification[A]. American Institute of Aeronautics and Astronautics. 32nd International Electric Propulsion Conference[C]. AIAA, 2011: 9.
[4] 王尚民, 田立成, 张家良, 等. 微脉冲等离子体推力器放电过程和性能初探[J]. 中国空间科学技术, 2017, 37(5): 24-32.
[5] CIARALLI S, COLETTI M, GABRIEL S B.Results of the qualification test campaign of a pulsed plasma thruster for cubesat propulsion(PPTCUP)[J]. Acta Astronautica, 2016, 121: 314-322.
[6] NAWAZ A, ALBERTONI R, AUWETER-KURTZ M.Thrust efficiency optimization of the pulsed plasma thruster SIMP-LEX[J]. Acta Astro-nautica, 2010, 67: 440-448.
[7] POTTINGER S J, SCHARLEMANN C A.Micro Pulsed plasma thruster development[A]. American Institute of Aeronautics and Astronautics. 30th International Electrec Propulsion Conference[C]. AIAA, 2007: 9.
[8] LEDUC J R, BROMAGHIM D R, PETERSON T. Mission planning, hardware development,ground testing for the Pulsed Plasma Thruster(PPT) Space Demonstration on MightySat II. 1[R/OL]. (1997-07-06)[2012-08-22].
https://arc.aiaa.org/doi/abs/10.2514/6.1997-2779.
[9] BENSON S W, ARRINGTON L A, HOSKINS W A. Development of a PPT for the EO-1 Spacecraft[R/OL]. (1999-06-20)[2012-08-22]. https://arc.aiaa.org/doi/abs/
2514/6.1999-2276.
[10] RAYBURN C, CAMPBELL M, HOSKINS W, et al. Development of a micro pulsed plasma thruster for the dawgstar nanosatellite[R/OL]. (2000-07-24)[2012-08-22].
https://arc.aiaa.org/doi/abs/10.2514/6.2000-3256.
[11] SCHEIN J, QI N, BINDER R, et al.Inductive energy storage driven vacuum arc thruster[J]. Review of Scientific Instruments, 2002, 73(2): 925-927.
[12] HURLEY S A, KEIDAR M.Linear actuated micro-cathode arc thruster system[A]. American Institute of Aeronautics and Astronautics. 52th AIAA/SAE/ASEE Joint Propulsion Conference[C]. AIAA, 2016: 7.
[13] SHINGO F, MASAYOSHI N, KAZUHIRO T, et al.Development of vacuum arc thruster for nano satellite[A]. American Institute of Aeronautics and Astronautics. 33rd International Electric Propulsion Conference[C]. AIAA, 2013: 10.
[14] KITTS C, TWIGGS R, PRANAJAYA F, et al.Emerald: a low cost formation flying technology validation mission[A]. IEEE 1999 IEEE Aeropace Conference Proceedings[C]. IEEE, 1999: 3.
[15] KITTS C, PRANAJAYA F, TOWNSEND J, et al.Emerald: an experimental mission in robust distributed space systems [A]. Utah State Unwersity. Proceedings of the 13th Annual AIAA/USU Conference on Small Satellites, Logan[C]. USU, 1999: 8.
[16] HRUBY V, SPENCE D, DEMMONS N, et al.ST7-DRS Colloid thruster system development and performance summary[A]. American Institute of Aeronatutics and Astronautics. 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit[C]. AIAA, 2008: 7.
[17] LEITER H J, ALTMANN C A, LAUER D, et al.Miniaturized radio frequency ion thrusters and systems-technology development and applications[A]. AIAA, 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit[C]. AIAA, 2014: 7.
[18] POTE B, HRUBY V, GAMERO-CASTANO M, et al. Low power hall thruster development for techsat 21, Mar 17-21, 2003[C]. Toulouse.
[19] SZABO J, POTE B, PAINTAL S, et al.Performance evaluation of an iodine vapor hall thruster[A]. AIAA, 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conferance & Exhibit[C]. AIAA, 2011: 7.
[20] 王尚民, 田立成, 张天平, 等. 基于12U标准立方体星的μ-PPT电推进系统研制[J]. 推进技术, 2018, 39(12): 2863-2872.
[21] 田立成, 赵成仁, 张天平, 等. SJ-17卫星LHT-100霍尔电推进系统飞行试验工作性能评价[J]. 推进技术, 2017, 38(11): 2411-2421.
[22] 田立成, 赵成仁, 张天平, 等. LHT-100霍尔电推进系统集成测试研究[J]. 推进技术, 2018, 39(1): 220-230.
[23] 田立成, 赵成仁, 孙小菁. 电推进器在GEO静止卫星上的安装策略[J]. 真空, 2014, 51(2): 70-73.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!