欢迎访问沈阳真空杂志社 Email Alert    RSS服务

真空 ›› 2021, Vol. 58 ›› Issue (6): 79-85.doi: 10.13385/j.cnki.vacuum.2021.06.15

• 真空应用 • 上一篇    下一篇

猕猴桃片真空冷冻干燥工艺及其效率研究*

彭润玲, 韦妍, 王鹏, 杨杰, 吴亚梅   

  1. 西安工业大学机电工程学院,陕西 西安 710021
  • 收稿日期:2020-12-08 出版日期:2021-11-25 发布日期:2021-11-30
  • 作者简介:彭润玲(1974-),女,甘肃省天水市人,副教授。
  • 基金资助:
    *国家自然科学基金青年项目(编号:51905406)

Study on Vacuum Freeze Drying Technology and Efficiency of Kiwifruit Slices

PENG Run-ling, WEI Yan, WANG Peng, YANG Jie, WU Ya-mei   

  1. School of Mechanical and Electrical Engineering, Xi′an Technological University, Xi′an 710021, China
  • Received:2020-12-08 Online:2021-11-25 Published:2021-11-30

摘要: 为了提高猕猴桃片冻干效率和质量,本文通过单因素实验研究了猕猴桃片冻干过程中切片厚度、预冻方式和干燥时间等因素对其干燥率及质量的影响;通过响应曲面方法分析了各因素之间的交互作用,得到其对干燥率的回归模型。结果表明:影响干燥率的次序依次为干燥时间、切片厚度、预冻方式;在实验型冻干设备上利用传统单面干燥方法时,猕猴桃片冻干工艺为:切片厚度5mm、-20℃预冻、干燥10h,优化为双面干燥后,在其余条件不变的情况下切片厚度可增加到7mm,干燥效率最高可增加约11%。

关键词: 猕猴桃片, 冻干, 工艺参数, 优化

Abstract: In order to improve the freeze-drying efficiency and quality of kiwifruit slices, the effect of slice thickness, pre-freezing method and drying time on the drying rate and quality of kiwifruit slices during freeze-drying process was studied by single factor experiment. The interaction between various factors was analyzed and the regression model of the drying rate of kiwifruit slices is obtained by the response surface method. The results show that the influencing order on the drying rate is drying time, slice thickness, and pre-freezing method. Among them, there was significant interaction between slice thickness and drying time, while there was no significant interaction between slice thickness and freezing mode, freezing mode and drying time. When the traditional single side drying method is used in the experimental freeze-drying equipment, the freeze-drying process of kiwifruit slices is as follows: slice thickness of 5mm, pre-freezing at -20℃, drying for 10h. After the optimization of double-sided drying, the slice thickness can be increased to 7mm, and the drying efficiency can be increased by about 11% at most.

Key words: kiwi slice, vacuum freeze drying, processing parameter, optimization

中图分类号: 

  • TG79
[1] XU F, LIU S, LIU Y, et al.Effectiveness of lysozyme coatings and 1-MCP treatments on storage and preservation of kiwifruit[J]. Food Chemistry, 2019, 288:201-207.
[2] ZHANG D, BI W, KAI K, et al.Effect of chlorogenic acid on controlling kiwifruit postharvest decay caused by Diaporthe sp[J]. LWT- Food Science and Technology, 2020, 132: 109805.
[3] 张臻, 豆康宁, 康锦锦. 猕猴桃果酱工艺优化研究[J]. 现代食品, 2019(18).
[4] 唐丽丽, 宋洁, 马兆瑞,等. 低糖猕猴桃果脯加工工艺研究[J]. 湖北农业科学, 2019, 58(23): 160-163.
[5] 张秦权, 文怀兴, 许牡丹,等. 猕猴桃切片真空干燥设备及工艺的研究[J]. 真空科学与技术学报, 2013, 33(1):1-4.
[6] 李志雅, 李清明, 苏小军, 等. 果蔬脆片真空加工技术研究进展[J]. 食品工业科技, 2015, 36(17): 384-387.
[7] FSTER C, PRÉSTAMO G, CANO M P. Drip loss, peroxidase and sensory changes in kiwi fruit slices during frozen storage[J]. Journal of the Science of Food & Agriculture, 1994, 64(1): 23-29.
[8] 万国福, 张嫚, 张兰. 水芹蔬菜冻干工艺中预冻条件分析[J]. 食品研究与开发, 2017(20): 61-64.
[9] 李安, 王建超, 王宇宇,等. 果蔬冷冻干燥颗粒的配方研究[J]. 食品工业科技, 2017(20): 171-176.
[10] 谢焕雄, 胡志超, 王海鸥,等. 真空冷冻干燥对柠檬挥发性风味化合物保留的影响[J]. 农业工程学报, 2018, 34(22): 282-290.
[11] 韩智宏, 邓永进, 任杰,等. 真空冷冻干燥技术在新品种桑果干制备中的应用[J]. 特产研究, 2018, 40(2): 19-21.
[12] 周新丽, 滕芸, 戴澄. 超声波平板冷冻提高胡萝卜冻干速率[J]. 农业工程学报, 2017, 33(1): 256-261.
[13] HUANG D, LI W, SHAO H, et al.Colour, Texture, Microstructure and Nutrient Retention of Kiwifruit Slices Subjected to Combined Air-Impingement Jet Drying and Freeze Drying[J]. International Journal of Food Engineering, 2017, 13(7): 1-14.
[14] 彭帮柱, 岳田利, 袁亚宏. 猕猴桃切片真空冷冻干燥工艺参数优化[J]. 农业机械学报, 2007(4): 98-102.
[15] 崔素萍, 张洪微, 魏文毅, 等. 猕猴桃加热与冷冻干燥中叶绿素和醌类物质的变化[J]. 农产品加工(学刊), 2008(3): 18-20.
[16] 房星星,肖旭霖.猕猴桃片真空冷冻干燥工艺研究[J]. 食品工业科技, 2008(1): 186-187.
[17] 曾凡杰, 孟莉, 吕远平. 不同前处理和冻结方式对猕猴桃片干制品品质的影响[J]. 食品科技, 2017, 42(8): 63-68.
[18] 麦润萍, 冯银杏, 李汴生. 基于分形理论的预冻温度对冻干猕猴桃片干燥特性及品质的影响[J]. 食品与发酵工业, 2018, 44(12): 155-160.
[1] 赵凡, 韩峰, 陈雨曈, 赵耀, 张志军, 蔡旭, 张世伟. 真空冷冻干燥技术在疫苗研发与生产中的应用[J]. 真空, 2021, 58(6): 72-78.
[2] 高鹏, 班超, 任少鹏, 金秀, 王忠连, 杨文华. 一种基于遗传算法的光学薄膜优化设计方法*[J]. 真空, 2021, 58(2): 27-30.
[3] 王颖, 明悦, 代玉博, 车恩林, 王标. 真空高温热处理炉石墨炉胆结构优化[J]. 真空, 2020, 57(6): 27-30.
[4] 宁远涛, 景加荣, 张延顺, 黄涛, 陈琦. 基于DFMA的复合分子泵优化及评价[J]. 真空, 2020, 57(4): 41-45.
[5] 杨飞, 李振海, 李建昌. 固体火箭发动机喷管型面的研究进展*[J]. 真空, 2020, 57(1): 40-47.
[6] 杨波, 来佑彬, 王冬阳, 李响, 吴海龙, 孙铭含, 苑仁月, 孙世杰. 高铬铁基合金等离子熔覆层表面硬度工艺研究*[J]. 真空, 2020, 57(1): 88-93.
[7] 彭润玲, 尹沙沙, 韦妍, 刘德荣, 王宁. 真空冷冻干燥法制备无机纳米粉的研究现状*[J]. 真空, 2019, 56(5): 77-84.
[8] 李阳, 同朴超, 李军仁, 朱军利, 张卓卓, 曹轶轲. 真空等离子焊箱用焊枪的改进优化[J]. 真空, 2019, 56(4): 71-73.
[9] 尹沙沙, 彭润玲, 韦 妍, 曹 蔚, 王 宁. 真空冷冻干燥法制备纳米二硫化钼的实验研究[J]. 真空, 2018, 55(6): 80-83.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!