欢迎访问沈阳真空杂志社 Email Alert    RSS服务

真空 ›› 2023, Vol. 60 ›› Issue (1): 71-75.doi: 10.13385/j.cnki.vacuum.2023.01.12

• 测量与控制 • 上一篇    下一篇

扫描式氩离子枪的电子光学系统研究*

石晓倩, 刘佳辉, 陈雪颖, 郭方准   

  1. 大连交通大学机械工程学院,辽宁 大连 116028
  • 收稿日期:2022-06-01 出版日期:2023-01-25 发布日期:2023-02-07
  • 通讯作者: 郭方准,教授,博导。
  • 作者简介:石晓倩(1994-),女,辽宁省大连市人,博士研究生。
  • 基金资助:
    *辽宁省教育厅“攀登学者”项目资助(项目编号:8800002)

Study on Electron Optical System of Scanning Ar Ion Gun

SHI Xiao-qian, LIU Jia-hui, CHEN Xue-ying, GUO Fang-zhun   

  1. School of Mechanical Engineering, Dalian Jiaotong University, Dalian 116028, China
  • Received:2022-06-01 Online:2023-01-25 Published:2023-02-07

摘要: 扫描式离子枪是样品表面清洁、表面刻蚀和深度分析的常用部件,加速电压在500V到3kV之间可调,具有效率高、性能可靠等优点。电子光学系统是离子枪的重要组成部分,是决定离子束流品质的重要因素。本文利用计算机模拟软件CST对离子枪整体结构进行建模,研究了离子枪聚焦系统不同结构和电压参数对离子束电流密度和束斑尺寸的影响,同时得到了离子枪偏转系统在不同电压分布下的离子分布情况,通过仿真分析确定了电子光学系统的设计方案,并进行了实验验证。结果表明:工作距离为25mm、氩气工作气压为6×10-3Pa、加速电压为3kV时,氩离子束的束流大小为3μA;束斑大小在7mm到12mm之间可调;当偏转电压为300V时,偏转角度为4.6°。实验与仿真结果基本对应,同时该离子枪的性能指标可获得表面原子精度构造。

关键词: 离子枪, 电子光学系统, 静电聚焦, 静电偏转

Abstract: Scanning ion gun is a common component for sample surface cleaning,surface etching and deep analysis, the acceleration voltage of which can be adjusted from 500V to 3kV. It has the advantages of high efficiency and reliable performance. Electron optical system is an important part of ion gun and an important parameter to determine the ion beam quality. In this paper, the computer simulation software CST is used to model the overall structure of the ion gun, the effects of different structure and voltage parameters of the ion gun focusing system on the ion beam current density and beam spot size are studied, and the ion distribution of ion gun deflection system under different voltage distribution is obtained. The design scheme of the electronic optical system is determined by simulation analysis and is verified by experiments. The test results show that when the working distance is 25mm, the working pressure of argon gas is 6×10-3Pa and the acceleration voltage is 3kV, the argon ion beam size is 3μA. Beam spot size can be adjustable from 7mm to 12mm. The deflection angle is 4.6° when deflection voltage is 300V. The test results are basically consistent with the simulation results, and the surface atomic precision structure can be achieved by the performance index of the ion gun.

Key words: ion gun, electron optical system, electrostatic focusing, electrostatic deflection

中图分类号: 

  • TH838
[1] 马世宁, 乔玉林. 新世纪的纳米科技以及在表面工程的应用[J]. 电刷镀技术, 2001, 4: 10-15.
[2] 游燕, 臧侃, 郭方准. 国产高能量电子枪的研发[J]. 物理, 2015, 44(11): 761-765.
[3] 戴达煌, 周克崧, 袁镇海. 现代材料表面技术科学[M]. 北京: 冶金工业出版社, 2004.
[4] 郭方准. 实用真空技术: 第二版[M]. 大连: 大连理工大学出版社, 2020.
[5] LI S Y, JIAO C J, XIE X H, et al.Stitching algorithm for ion beam figuring of optical mirrors[J]. Sci China Ser E: Tech Sci, 2009, 52(12): 3580-3586.
[6] WANG T Y, HUANG L, KANG H, et al.RIFTA: a robust iterative Fourier transform-based dwell time algorithm for ultra-precision ion beam figuring of synchrotron mirrors[J]. Scientific Reports, 2020, 10: 8135.
[7] ZEUNER M, KIONTEK S.Ion beam figuring technology in optics manufacturing[J]. Optik & Photonik, 2012, 7(2): 56-58.
[8] ABASAHL B, SANTSCHI C, RAZIMAN T V, et al.Fabrication of plasmonic structures with well-controlled nanometric features: a comparison between lift-o and ion beam etching[J]. Nanotechnology, 2021, 32(47): 475202.
[9] 唐天同, 刘纯亮. 电子束与离子束物理[M]. 西安: 西安交通大学出版社, 2001.
[10] GUSHENETS V, BUGAEV A, OKS E.Ion source based on a circular anode layer plasma thruster[J]. The Review of Scientific Instruments, 2019, 90(11): 113310.
[11] LU Y, XIE X H, ZHOU L, et al.Improve optics fabrication efficiency by using a radio frequency ion beam figuring tool[J]. Applied Optics, 2017, 56(2): 260-266.
[12] 徐学基, 诸定昌. 气体放电物理[M]. 上海: 复旦大学出版社, 1996.
[13] 杨震, 刘方军, 张伟. 电子枪静电透镜部件仿真与优化[J]. 航空制造技术, 2018, 61(17): 42-46.
[14] 博德怀恩B A, 茹尔尼特D L. 用于电离真空计的分子屏: CN101726390A[P].2010-06-09.
[15] 朱美强, 石晓倩, 唐瓦, 等. 高能量大束流氩离子枪的研发[J]. 核技术, 2021, 44(9): 41-46.
[16] 华中一, 顾昌鑫. 电子光学[M]. 上海: 复旦大学出版社, 1992: 115-116.
[17] PITTAWAY L G.Electron trajectories in ionization gauges[J]. Vacuum, 1970, 20(9): 392.
[18] 王小菊, 吕一帆, 祁康成, 等. 基于XPS的中和电子枪仿真实验[J]. 实验室研究与探索, 2020, 39(2): 72-75.
[19] HOSEINZADE M, NIJATIE A, SADIGHZADEH A, et al.Numerical simulation and design of a thermionic electron gun[J]. Chinese Physics C, 2016, 40(5): 94-100.
[20] CST. CST 粒子工作室基础入门: 三维带电粒子动力学仿真[M]. 上海: 上海软波工程软件有限公司, 2006.
[21] 邱宇帆, 李胜波, 郑新建, 等. 多参数耦合下电子枪静电聚焦特性分析[J]. 真空科学与技术学报, 2021, 41(11): 1094-1100.
[22] 许海鹰, 王壮, 桑兴华, 等. 丝束同轴冷阴极电子枪的研制[J]. 真空, 2021, 58(2): 76-81.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!