欢迎访问沈阳真空杂志社 Email Alert    RSS服务

真空 ›› 2025, Vol. 62 ›› Issue (3): 9-14.doi: 10.13385/j.cnki.vacuum.2025.03.02

• 真空冶金与热工 • 上一篇    下一篇

电子束熔炼炉射线屏蔽的设计与计算

牟鑫, 马强, 马海玲, 高元, 刘长青, 葛家希, 李心可   

  1. 沈阳真空技术研究所有限公司,辽宁 沈阳 110042
  • 收稿日期:2024-10-26 出版日期:2025-05-25 发布日期:2025-05-23
  • 作者简介:牟鑫(1982-),男,山东高密人,高级工程师,硕士。

Design and Calculation of Radiation Shielding for Electron Beam Melting Furnaces

MU Xin, MA Qiang, MA Hailing, GAO Yuan, LIU Changqing, GE Jiaxi, LI Xinke   

  1. Shenyang Vacuum Technology Institute Co., Ltd., Shenyang 110042, China
  • Received:2024-10-26 Online:2025-05-25 Published:2025-05-23

摘要: 电子枪是电子束熔炼炉的核心部件之一,其工作时会在熔炼室内产生大量X射线。熔炼室壁是简单且可有效屏蔽辐射的唯一屏障。为保证人员安全并满足国家相关标准要求,结合理论计算与几何结构分析,从炉壁板厚、内外板焊缝搭接形式、炉门缝隙拼接结构、观察窗铅玻璃厚度等角度对熔炼室进行了射线屏蔽设计,并通过现场测量对熔炼室的射线屏蔽效果进行了测试。结果表明,炉外人员可达区域辐射剂量率与环境本底相当,熔炼室可有效屏蔽X射线。

关键词: 电子束熔炼炉, X射线, 辐射防护

Abstract: Electron gun is one of the core components of electron beam melting furnace, which can generate considerable X-rays in the melting chamber during operation. The melting chamber wall is the only barrier for simple and effective radiation shielding. In order to ensure the personnel safety and meet the requirements of relevant national standards, the ray shielding design of the melting chamber was carried out from the furnace wall plate thickness, the overlap form of weld joints between inner and outer panels, the furnace door seam splicing structure and the thickness of lead glass for observation window, combined with theoretical calculations and geometric structural analysis. The radiation shielding effect of the melting chamber was tested through the field radiation measurements. The results show that the radiation dose rate in the area accessible to personnel outside the furnace is comparable to the environmental background, and the melting chamber can be effectively shielded from X-rays.

Key words: electron beam melting furnace, X-ray, radiation protection

中图分类号:  TB756

[1] 安仲生,陈岩,赵巍.2022年中国钛工业发展报告[J].钛工业进展,2023,40(2):40-48.
[2] 冯寅楠,闫鹏,贾国斌. 电子束冷床熔炼的应用现状[J]. 中国材料进展,2020,39(4):295-303.
[3] 张以忱. 电子枪与离子束技术[M]. 北京:冶金工业出版社, 2004: 83
[4] 肖智强. 高能轫致辐射X射线源特性研究综述[C]//西南地区第十一次无损检测学术年会暨2011年(昆明)国际无损检测仪器展览会论文集. 昆明:中国工程物理研究院流体物理研究所, 2011:146-150.
[5] 李进玺,吴伟,程引会,等. 不同复合阳极靶轫致辐射场参数的数值模拟[J]. 辐射研究与辐射工艺学报,2023,41(3):107-112.
[6] PATON B E, TRYGUB M P, AKHONIN S V.钛、锆及其合金的电子束熔炼[M]. 樊生文, 王殿儒, 张海峰, 等译. 北京:机械工业出版社, 2011: 8.
[7] 王东,苍大强,张玲玲. 真空电子束炉中移动热源的熔池流场及温度场研究[J]. 冶金能源,2017,36(1):19-23.
[8] 田世藩,马济民. 电子束冷炉床熔炼(EBCHM)技术的发展与应用[J]. 材料工程,2012(2):77-85.
[9] STALBAUM T, BOYD D, WEIL M, et al.200 kV X-ray source for radiotherapy and imaging: preliminary results and discussion[C]//Medical Imaging 2020: Physics of Medical Imaging. SPIE, 2020,11312:881-887.
[10] HOSONUMA H.Establishment of qualification of X-ray shielding calculation technician for X-ray examination rooms by JIRA[J].Japanese Journal of Radiological Technology, 2022,78(4):421-423.
[11] 李育贤,杨丽春. 3150KWB BMO-01型大功率电子束冷床炉熔炼TC4钛合金[J]. 有色金属(冶炼部分),2017(3):58-61.
[12] 彭博,黄宁,王鹏,等. 10~50 keV的X射线管轫致辐射能谱的解析计算[J]. 原子能科学技术,2023,57(6):1233-1242.
[13] RALITE F, KOUMEIR C, GUERTIN A, et al.New experimental bremsstrahlung cross-section for light ion beams up to 60 MeV and comparison to theoretical models[J]. Radiation Physics and Chemistry, 2023, 203:110605.
[14] 姜灿,陈思,刘宏章,等. 1 MeV电子加速器辐射屏蔽防护研究[J]. 核电子学与探测技术,2017,37(12):1213-1217.
[15] 赵延军,彭伟,柳玲,等. 10 MeV电子束辐照医疗保健产品剂量控制应用初探[J]. 辐射研究与辐射工艺学报,2022,40(1):72-79.
[16] OSMAN A F, EL BALAA H, EL SAMAD O, et al.Assessment of X-ray shielding properties of polystyrene incorporated with different nano-sizes of PbO[J]. Radiation and Environmental Biophysics, 2023, 62(2):235-251.
[17] 薛颖. 自屏蔽电子加速器的辐照室屏蔽设计[J]. 中国资源综合利用,2021,39(2):62-64.
[18] 赵延军,吕均涛,刘卫霞,等. 10 MeV电子加速器出束能量参数测量及其初步应用[J]. 辐射研究与辐射工艺学报,2020,38(4):75-80.
[19] 郑钧正. 国际基本安全标准的演进[J]. 辐射防护,2015,35(6):356-366.
[20] 王厉秦都,姜铖,李荣霞. 某X-射线探伤室的屏蔽计算分析[J]. 环境科学与技术,2016(s2):498-503.
[21] GRYCZKA U, ZIMEK Z, WALO M, et al.Advanced electron beam (EB) wastewater treatment system with low background X-ray intensity generation[J]. Applied Sciences, 2021, 11(23):11194.
[22] OMAR A, ANDREO P, POLUDNIOWSKI G.A model for the energy and angular distribution of x rays emitted from an X-ray tube. Part I. Bremsstrahlung production[J]. Medical Physics, 2020, 47(10):4763-4774.
[23] PATEL S, HOFF C, GWILLIM M. Local stress analysis of stiffened shells using MSC/NASTRAN’s shell and beam p-elements [EB/OL]. (2024-10-15). https://web.mscsoftware.com/support/library/conf/auc97/p04797.pdf.
[24] 姜灿,陈思,王升,等. 加速器屏蔽室入口安全系统的设计[J]. 核电子学与探测技术,2016,36(6):570-573.
[25] 张力,高林峰,吴水龙,等. 电子束辐照装置迷路出口处的防护剂量计算[J]. 中国辐射卫生,2005,14(4):278-279.
[26] 郑芳. 工业电子辐照加速器屏蔽体中预埋管道辐射场及迷宫优化研究[D].合肥:中国科学技术大学,2017.
[27] 张志程,陆春海,陈敏,等. 钨玻璃与铅玻璃对X射线辐射屏蔽效果的数值计算分析[J]. 核科学与工程,2016,36(3):424-429.
[1] 宋涛, 张柏诚, 姜正鹤, 张黎源. 方形电子束熔炼炉真空腔体设计研究*[J]. 真空, 2025, 62(2): 42-46.
[2] 宋涛, 张柏诚, 王春雷, 姜正鹤. 大型串联电子束熔炼炉抽真空系统设计研究*[J]. 真空, 2024, 61(4): 30-34.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!