欢迎访问沈阳真空杂志社 Email Alert    RSS服务

真空 ›› 2025, Vol. 62 ›› Issue (3): 38-41.doi: 10.13385/j.cnki.vacuum.2025.03.07

• 真空冶金与热工 • 上一篇    下一篇

氢化脱氢制备锆-2粉末过程的工艺安全分析

王振宏1, 王本龙1, 车恩林2, 苏宁2, 刘君2   

  1. 1.中国核电工程有限公司郑州分公司,河南 郑州 450052;
    2.沈阳真空技术研究所有限公司,辽宁 沈阳 110042
  • 收稿日期:2025-01-26 出版日期:2025-05-25 发布日期:2025-05-23
  • 作者简介:王振宏(1985-),男,河南省林州市人,硕士,高级工程师。

Safety Analysis of the Hydrogenation and Dehydrogenation Process of Zirconium-2 Powder

WANG Zhenhong1, WANG Benlong1, CHE Enlin2, SU Ning2, LIU Jun2   

  1. 1. China Nuclear Power Engineering Co., Ltd., Zhengzhou 450052, China;
    2. Shenyang Vacuum Technology Research Institute Co., Ltd., Shenyang 110042, China
  • Received:2025-01-26 Online:2025-05-25 Published:2025-05-23

摘要: 氢化脱氢工艺属常见的化学反应方式,通过相关化合物内的氧化物与氢原子发生化学反应,实现氢气的去除或添加,进而改变化合物内部构成。本文详细分析了氢化脱氢制备锆-2粉末的工艺设计流程,全面探究其用途与使用背景。通过氢化、粗破碎与细破碎、脱氢、二次粗破碎与细破碎、钝化与分离等步骤探索该工艺技术操作的安全性,明确其操作范围,充分发挥该工艺优势,极大提升工艺制备效果,满足化合物性质调整需求。

关键词: 锆-2粉末工艺, 钝化分离, 氢化脱氢制备, 安全性

Abstract: The hydrogenation and dehydrogenation process is a common chemical reaction method, which involves the chemical reaction between oxides and hydrogen atoms in related compounds to remove or add hydrogen gas, thereby changing the internal composition of the compound. This article provides a detailed analysis of the process design flow for preparing zirconium-2 powder through hydrogenation and dehydrogenation, and comprehensively explores its applications and background. By exploring the safety of this process technology through steps such as hydrogenation, coarse crushing and fine crushing, dehydrogenation, secondary coarse crushing and fine crushing, passivation and separation, clarify its operating range, fully utilize the advantages of this process, greatly improve the preparation effect of the process to meet the needs of adjusting compound properties.

Key words: zirconium-2 powder process, passivation separation, hydrogenation and dehydrogenation preparation, safety

中图分类号:  TB79

[1] 强瑞,张宏智,王俊魁,等.氢化脱氢工艺的控制对锆合金粉末性能的影响[J].冶金与材料,2024,44(6):184-186.
[2] 邹学通,陈碧武,刘金志,等.合金钛粉制备铝合金钛剂的研究及应用[J].云南冶金,2024,53(3):258-262.
[3] 张衬新. 增材制造用钛合金粉末的制备现状[J].有色冶金设计与研究,2023,44(4):15-18.
[4] 魏振河,廖军华,沙江波.氢化脱氢法制备Nb-Si基超高温合金粉末的研究[J].精密成形工程,2022,14(11):153-162.
[5] 费翼鹏,杨斌,石锦宇,等.桌面式高通量微反应系统制备氢氟酸改性锆粉[J].爆破器材,2023,52(6):16-21.
[6] 谭海翔,韦世强,秦文忠,等.稳定氧化锆纳米材料制备方法及应用[J].大众科技,2023,25(7):52-55.
[7] 邱坤. 光固化制备氧化锆生物陶瓷及性能研究[D].济南:济南大学,2023.
[8] 豆雨欣,罗绍华,张显,等.氧化锆陶瓷增韧机制及其粉体制备的研究进展[J].材料导报,2023,37(S1):126-131.
[9] 乐茜蓉. 纳米复合材料GO/ZrO2改性PVDF复合超滤膜性能研究[D].昆明:云南师范大学,2023.
[10] 王杏. 低碳铝碳耐火材料用碳源、类碳源制备及对材料性能影响机制[D].武汉:武汉科技大学,2023.
[11] 宋志健. 高温热障涂层用锆基粉体的制备及性能研究[D].郑州:河南工业大学,2023.
[12] 杨芳,李延丽,申承秀,等.钛及钛合金粉末制备与成形工艺研究进展[J].粉末冶金技术,2023,41(4):330-337.
[13] 王漪. 纳米氧化锆复合陶瓷粉体的制备和应用[J].佛山陶瓷,2023,33(4):62-64.
[14] 杜沛南,姚力夫,李传锋,等.锆-2 合金粉末制备新工艺研究[J]. 粉末冶金技术 ,2018,36(1):55-60.
[15] 宋晓鹏,董文杰,杨欣静.后处理厂首端锆粉末着火特性分析及预防措施[J].当代化工研究,2022,(12):65-67.
[16] 于肖蕊. 氧化铝/无机粘结剂复合激光防护涂层的制备及性能研究[D].哈尔滨:哈尔滨工业大学,2022.
[17] 周游. 电气石对纳米氧化锆粉体合成及性能影响机理研究[D].天津:河北工业大学,2022.
[18] 陈颖鑫. 水热法纳米氧化锆的调控制备及应用研究[D].郑州:河南工业大学,2022.
[19] 宋健清,李玉虎,张敏,等.直接热解法制备棒状二氧化锆粉体[J].有色金属科学与工程,2022,13(4):28-34.
[20] 宋艳伟. 氧化锆陶瓷的烧结行为与力学性能研究[D].武汉:武汉理工大学,2022.
[21] DONG C W, DUAN L H, LIU H N, et al.Preparing ZrH2 powder by magnesiothermic reduction in hydrogen[J].Journal of Central South University,2023,30(5):1512-1522.
[22] FEDORENKO N Y, ABIEV R S, KUDRYASHOVA Y S,et al.Comparative study of zirconia based powders prepared by co-precipitation and in a microreactor with impinging swirled flows[J].Ceramics International,2022,48(9):13006-13013.
[23] ZHAO L, WANG X Y, LEE S, et al.Up-scalable preparation of nano zirconium carbide powder in liquid polymeric precursor and its pyrolysis mechanism[J].Ceramics International,2022,48(3):3216-3223.
[24] WOJTECZKO K, Pędzich Z, Zientara D, et al.Phenomena occurring upon the sintering of a mixture of yttria-zirconia nanometric powder and sub-micrometric pure zirconia powder[J].Materials,2021,14(22):6937-6937.
[25] MUNIANDY S, SOOSAI A, LOONG T H.Effect of sintering temperature to the mechanical properties of different filler loading of zirconia powder in hydroxyapatite composites[J].Materials Science Forum,2021,1030, 27-34.
[26] DING Z H, HUANG X L, LIU W L, et al.Preparation of high-temperature active zirconium boride powders via precursor route and microwave sintering[J].Advances in Applied Ceramics,2021,120(4):222-226.
[27] BUINACHEV S, MASHKOVTSEV M A, ZHIRENKINA N, et al.A new approach for the synthesis of monodisperse zirconia powders with controlled particle size[J]. International Journal of Hydrogen Energy, 2021,46(32):16878-16887.
[1] 成成, 贾子朝, 吕绪明, 闫超, 郭志伟. 真空电子束熔炼炉用冷却装置的模块化设计和应用[J]. 真空, 2023, 60(2): 68-72.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!