欢迎访问沈阳真空杂志社 Email Alert    RSS服务

真空 ›› 2023, Vol. 60 ›› Issue (5): 29-36.doi: 10.13385/j.cnki.vacuum.2023.05.03

• 真空应用 • 上一篇    下一篇

小微纳卫星微小型电推进系统应用展望*

田立成, 王润福, 王尚民   

  1. 兰州空间技术物理研究所 真空技术与物理重点实验室, 甘肃 兰州 730000
  • 收稿日期:2022-12-28 出版日期:2023-09-25 发布日期:2023-09-26
  • 作者简介:田立成(1983-),男,山东肥城人,硕士,研究员。
  • 基金资助:
    *国家自然科学基金(No. 12005087)

Prospect of the Micro-electric Propulsion System Application for the Nano-satellite

TIAN Li-cheng, WANG Run-fu, WANG Shang-min   

  1. Science and Technology on Vacuum Technology and Physics Laboratory, Lanzhou Institute of Physics, Lanzhou 730000, China
  • Received:2022-12-28 Online:2023-09-25 Published:2023-09-26

摘要: 随着微机电系统技术与超大规模集成电路等技术的迅速发展,小微纳卫星因较低的成本、可完成一定复杂度的任务成为了当前各国商业航天发展的重要方向,小微纳卫星的在轨机动能力需求牵引了系列化微小型电推进系统的研制与在轨搭载验证。本文首先对小微纳卫星任务对电推进系统的需求进行了论证,随后简述了微小型电推进系统的特点,介绍了国内外微小型电推进系统研制与在轨验证情况,最后对国内微小型电推进系统的研制与在轨应用进行了展望。

关键词: 小卫星, 微纳卫星, 微小型电推进系统

Abstract: With the rapid evolution of the MEMS and VLSI technologies, small nano-satellite, being low cost and competent in complicated tasks, has become a crucial orientation of the commercial aerospace in the world. The on-orbit maneuverability ability of the small nano-satellite promotes the serial micro-electric propulsion system′s development and on-orbit verification. In this paper, the demands of the electric propulsion system for the small nano-satellite are firstly demonstrated. Then the characteristics of the micro-electric propulsion system are introduced, including the product engineering and on-orbit verification of the micro-electric propulsion system at domestic and overseas. Finally, the development and on-orbit application of the micro-electric propulsion in China are prospected.

Key words: minisatellite, nano-satellite, micro-electric propulsion systemt

中图分类号:  V439+.2

[1] MANZELLA D, JANKOVSKY R, ELLIOTT F, et al.Hall thruster plume measurements on-board the russian express satellites[C]//27th International Electric Propulsion Conference. Pasadena, CA: The Electric Rocket Propulsion Society, 2001.
[2] SITNIKOVA N, VOLKOV D, MAXIMOV I, et al.Hall effect thruster interactions data from the Russian Express-A2 and Express-A3 satellites[R]. NASA/CR-2003-212005, 2003.
[3] 张郁. 电推进技术的研究应用现状及其发展趋势[J]. 火箭推进, 2005, 31(2): 27-36.
[4] 田立成, 王小永, 张天平. 空间电推进应用及技术发展趋势[J]. 火箭推进, 2015, 41(3): 7-14.
[5] 田立成, 王尚民, 高俊, 等. 微电推进系统研制及应用现状[J]. 真空, 2021, 58(2): 66-75.
[6] 王存恩. 日本隼鸟-2任务进展及后续飞行计划[J]. 国际太空, 2018(8): 10-13.
[7] 杭观荣. 电推进在深空探测主推进中的应用及发展趋势[J]. 火箭推进, 2012, 48(4): 1-8.
[8] 杨福全, 郑茂繁, 杨威, 等. 用于无拖曳飞行航天器的LIPS-100离子推力器研制[C]//中国宇航协会.2015年小卫星技术学术交流会论文集, 2015: 387-392.
[9] KILLINGER R, BASSNER H, MUELLER J, et al.High performance RF-ion thruster development(RIT XT)- performance and durability test results[C]//Joint Propulsion Conference & Exhibit. AIAA, 2013.
[10] LEITER H, KILLINGER R, BOSS M, et al.RIT-μX- high precision micro ion propulsion system based on RF-technology[C]//43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Cincinnati, OH: AIAA, 2007.
[11] LEITER H J, ALTMANN C A, LAUER D, et al, Miniaturized radio frequency ion thrusters and systems-technology development and applications[C]// 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. AIAA, 2014.
[12] MARTINEZ D R, AANESLAND A.Development and testing of the NPT30-I2 iodine ion thruster[C]//36th International Electric Propulsion Conference. Austria: Electric Rocket Propulsion Society, 2019.
[12] LOEB H W, SCHARTNER K.Development of RIT- Microthrusters[C]//55th International Astronautical Congress. Vancouver: International Astronautical Federation, 2004.
[13] FIELI D, LOTZ B, BONNET S.μNRIT-2.5-a new optimized microthruster of Giessen university[C]//31st International Electric Propulsion Conference. Ann Arbor: Electric Rocket Propulsion Society, 2009.
[15] HRUBY P, DEMMONS N, COURTNEY D, et al.Overview of BUSEK Electric Propulsion[C]//36th International Electric Propulsion Conference. Vienna: University of Vienna, 2019.
[16] TSAY M, HOHMAN K, ROSENBLAD N, et al.Micro radio-frequency ion propulsion system[C]//48th AIAA/ ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Atlanta: AIAA, 2012.
[17] TRUDEL T A, BILEN S G, MICCI M M.Design and performance testing of a 1-cm miniature radio-frequency ion thruster[C]//31st International Electric Propulsion Conference. Ann Arbor: Electric Rocket Propulsion Society, 2009.
[18] RAFALSKYI D.A neutralizer-free gridded ion thruster embedded into AIU cubesat module[C]//35th International Electric Propulsion Conference Georgia Institute of Technology. Atlanta: Georgia Institute of Technology,2017.
[19] POTE B N, HRUBY V, GAMERO-CASTANO M, et al. Low power hall thruster development for techsat21[C]// 28th International Electric Propulsion Conference(2003)21. Toulouse, 2003.
[20] 田立成, 赵成仁, 张天平, 等. SJ-17卫星LHT-100霍尔电推进系统飞行试验工作性能评价[J]. 推进技术, 2017, 38(11): 2411-242.
[21] HRUBY V, SPENCE D, DEMMONS N, et al.ST7-DRS colloid thruster system development and performance summary[C]//44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Hartford: AIAA, 2008.
[22] 田立成, 王尚民, 陈新伟, 等. 25W级脉冲等离子体推进系统飞行试验工作性能评价[C]//中国宇航协会.2021年电推进技术学术研讨会会议论文集, 2021: 21-34.
[1] 田立成, 王尚民, 高俊, 孟伟, 田恺, 吴辰宸. 微电推进系统研制及应用现状*[J]. 真空, 2021, 58(2): 66-75.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!