欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2021, Vol. 58 ›› Issue (6): 67-71.doi: 10.13385/j.cnki.vacuum.2021.06.13

• Vacuum Metallurgy and Thermal Engineering • Previous Articles     Next Articles

Aseismic Analysis of Crucible Cooling Frame for Vacuum Electron Beam Melting

CHENG Cheng1, ZHANG Fan1, LI Ju1, REN Qi-chen2   

  1. 1. Institute of Physical and Chemical Engineering of Nuclear Industry, Tianjin 300180, China;
    2. Vacree Technology Co.,Ltd.,Hefei 230000, China
  • Received:2020-06-28 Online:2021-11-25 Published:2021-11-30

Abstract: The crucible for vacuum electron beam melting works in high vacuum and high temperature environment, and needs to be cooled sufficiently to ensure its normal operation. The closed cycle water supply device for crucible cooling is non-nuclear safety seismic category equipment with special requirements. It must be ensured that the device is undamaged and can supply water normally under earthquake conditions. Therefore, it is great useful to do anti-seismic analysis. The frame of equipment is the most important part in anti-seismic analysis. Based on ANSYS, the modal of frame was calculated, the seismic performance was analyzed with response spectrum analysis method. The safety capability of the frame under earthquake load is evaluated, which provides a reference for anti-seismic design and seismic experiment of the device. The research results have important reference for production practice.

Key words: vacuum electron beam, crucible cooling, frame, aseismic capacity

CLC Number: 

  • TF134
[1] 张文林, 孙涛, 李娟莹. 电子束熔炼及其设备[J]. 冶金设备, 2003(4): 32-34+31.
[2] 张树林. 真空电子束炉[J]. 真空科学与技术, 1984, 3(4): 217-226.
[3] 尹中荣, 马元, 郑杰. 新型电子束熔炼炉的研制[J]. 真空, 2003(6): 44-47.
[4] 王福清, 汪晓江, 杜彬. 关于钛及钛合金电子束冷床熔炼炉真空系统的设计[J]. 真空, 2018, 1(55): 61-64.
[5] 张延宾, 孙照富, 尹中荣. 大型太阳能级多晶硅提纯用真空电子束熔炼炉的研制[J]. 真空, 2014, 4(51): 22-25.
[6] 刘欢,张帆,罗立平.电子束熔炼用水冷铜坩埚水道数值模拟[C].中国核科学技术进展报告(第五卷)——中国核学会2017年学术年会论文集, 2017: 241-248.
[7] 吴健, 宋虎, 曾钢. 金属铀电子束熔炼实验及数值模拟研究[J]. 矿冶工程, 2020, 40(1): 134-137.
[8] 王东, 苍大强, 张玲玲. 真空电子束炉中移动热源的熔池流场及温度场研究[J]. 冶金能源, 2017, 36(1): 19-23+55.
[9] 周丹. AP1000核电站余热排出热交换器的抗震性能分析[J]. 压力容器, 2011, 28(4): 23-27.
[10] 马月, 魏冬, 刘龙. 核级阀门抗震分析[J]. 中国核科学技术进展报告, 2017, 16(4): 241-248.
[11] 张永伟, 康兴无. 基于ANSYS Workbench某通信发射塔模态及地震响应谱分析[J]. 兵器装备工程学报, 2016, 37(11): 83-86.
[12] 周文霞, 张继革, 王德忠. 核电站主泵机组地震响应谱分析及应力评定[J]. 原子能科学技术, 2011, 45(1):54-59.
[13] 赵勇. 核电厂堆芯补水箱抗震分析[J]. 核安全, 2017, 16(4): 90-94.
[14] 侯春林, 李小军, 潘蓉. 不同法规关于核动力厂竖向地震动要求的分析[J]. 核安全, 2015, 14(1): 50-55+37.
[15] 兰麒, 胡雯婷. 等效静力法和谱分析法在设备抗震分析中的应用[J]. 核动力工程, 2014, 35(1):145-148.
[1] ZHANG Zhi-ping, XU Zhong-zheng, ZHANG Li-yuan, JIANG Zheng-he. Design of Vacuum Pumping System for Electron Beam Melting Furnace [J]. VACUUM, 2021, 58(5): 42-45.
[2] ZHANG Zhi-ping. Design of Continuous Casting System for Electron Beam Melting Furnace [J]. VACUUM, 2019, 56(4): 40-43.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!