VACUUM ›› 2023, Vol. 60 ›› Issue (2): 1-13.doi: 10.13385/j.cnki.vacuum.2023.02.01
• Vacuum Technology Application • Next Articles
LIU Yan-wen1, LU Yu-xin2, ZHANG Xiao-lin1, MENG Ming-feng1, LI Fen1, ZHAO Heng-bang1, WANG Xiao-xia1
CLC Number:
[1] SELCUK C, WOOD J V.Reactive sintering of porous tungsten:a cost effective sustainable technique for the manufacturing of high current density cathodes to be used in flashlamps[J]. J Mater Process Technol, 2005, 170(1/2): 471-476. [2] LIU P S, CHEN G F.Porous materials: processing and applications[M]. 北京: 清华大学出版社, 2014: 113-188. [3] GOODALL R, MORTENSEN A.Porous metals[M]//LAUGHLIN D E, HONO K. Physical Metallurgy. Elsevier, 2015: 2399-2595. [4] LLYUSHCHANKO A P, CHARNIAK I M, KUSIN R A, et al.The process of obtaining of porous permeable materials by electric current sintering of metal powders, fibers and nets[C]//Journal of Physics: Conference Series. Omsk, Russian Federation: IOP Publishing, 2019, 1210(1): 012057. [5] MURAKAMI T, OHARA K, NARUSHIMA T, et al.Development of a new method for manufacturing iron foam using gases generated by reduction of iron oxide[J]. Mater Trans, 2007, 48(11): 2937-2944. [6] MURAKAMI T, AKAGI T, KASAI E.Development of porous iron based material by slag foaming and its reduction[J]. Procedia Materials Science, 2014, 4: 27-32. [7] MURAKAMI T, TAKAHASHI T, FUJI S, et al.Development of manufacturing principle of porous iron by carbothermic reduction of composite of hematite and biomass char[J]. Mater Trans, 2017, 58(12): 1742-1748. [8] KHABUSHAN J K, BONABI S B, AGHBAGH F M, et al.A study of fabricating and compressive properties of cellular Al-Si(355.0) foam using TiH2[J]. Materials & Design, 2014, 55: 792-797. [9] YANG D H, YANG S R, WANG H, et al.Compressive properties of cellular Mg foams fabricated by melt-foaming method[J]. J Mater Sci Eng A, 2010, 527(21/22): 5405-5409. [10] LARA-RODRIGUEZ G A, FIGUEROA I A, SUAREZ M A, et al. A replication-casting device for manufacturing open-cell Mg foams[J]. J Mater Process Technol, 2017, 243: 16-22. [11] BANHART J.Manufacture,characterisation and application of cellular metals and metal foams[J]. Prog Mater Sci, 2001, 46(6): 559-632. [12] YAMADA Y, SHIMOJIMA K, SAKAGUCHI Y, et al.Processing of an open-cellular AZ91 magnesium alloy with a low density of 0.05g/cm3[J]. J Mater Sci Lett, 1999, 18(18): 1477-1480. [13] XU Y, MENON A S, HARKS P P R, et al. Honeycomb-like porous 3D nickel electrodeposition for stable Li and Na metal anodes[J]. Energy Storage Mater, 2018, 12: 69-78. [14] LIU P S, LIANG K M.Review functional materials of porous metals made by P/M, electroplating and some other techniques[J]. J Mater Sci, 2001, 36(21): 5059-5072. [15] LÜHRS L, WEISSMÜLLER J. Nanoporous copper-nickel-macroscopic bodies of a strong and deformable nanoporous base metal by dealloying[J]. Scr Mater, 2018, 155: 119-123. [16] YUAN L, DING S, WEN C.Additive manufacturing technology for porous metal implant applications and triple minimal surface structures: a review[J]. Bioact Mater, 2019, 4: 56-70. [17] YAN R Z, LUO D M, HUANG H T, et al.Electron beam melting in the fabrication of three-dimensional mesh titanium mandibular prosthesis scaffold[J]. Scientific Reports, 2018, 8: 750. [18] ZHAO B, GAIN A K, DING W F, et al.A review on metallic porous materials: pore formation, mechanical properties, and their applications[J]. Int J Adv Manuf Technol, 2018, 95: 2641-2659. [19] QIN J H, CHEN Q, YANG C Y, et al.Research process on property and application of metal porous materials[J]. J Alloys Compd, 2016, 654: 39-44. [20] HUANG A Q, HE Y Z, ZHOU Y Z, et al.A review of recent applications of porous metals and metal oxide in energy storage, sensing and catalysis[J]. J Mater Sci, 2019, 54: 949-973. [21] SINGH S, BHATNAGAR N.A survey of fabrication and application of metallic foams(1925-2017)[J]. J Porous Mater, 2018, 25: 537-554. [22] KATO K, YAMAMOTO A, OCHIAI S, et al.Cytocompatibility and mechanical properties of novel porous 316L stainless steel[J]. Mater Sci Eng C Biomim Mater Sens Syst, 2013, 33(5): 2736-2743. [23] MURR L E.Metallurgy principles applied to powder bed fusion 3D printing/additive manufacturing of personalized and optimized metal and alloy biomedical implants:an overview[J]. J Mater Res Technol, 2020, 9(1): 1087-1103. [24] RASHIDI S, ESFAHANI J A, RASHIDI A.A review on the applications of porous materials in solar energy systems[J]. Renew Sustain Energy Rev, 2017, 73: 1198-1210. [25] TAN W C, SAW L H, THIAM H S, et al.Overview of porous media/metal foam application in fuel cells and solar power systems[J]. Renew Sustain Energy Rev, 2018, 96: 181-197. [26] ZHU W W, WANG H, ZHAO R, et al.In situ fabrication of nitrogen doped porous carbon nanorods derived from metal-organic frameworks and its application as supercapacitor electrodes[J]. J Solid State Chem, 2019, 277: 100-106. [27] JIN W, MADURAIVEERAN G.Recent advances of porous transition metal-based nanomaterials for electrochemical energy conversion and storage applications[J]. Mater Today Energy, 2019, 13: 64-84. [28] KECSKES L J, KLOTZ B R, CHO K C, et al.Densification and structural change of mechanically alloyed W-Cu composites[J]. Metall Mater Trans A, 2001, 32: 2885-2893. [29] JOHNSON J L, GERMAN R M.Phase equilibria effects on the enhanced liquid phase sintering of tungsten-copper[J]. Metall Mater Trans A, 1993, 24: 2369-2377. [30] RAGHU T, SUNDARESAN R, RAMAKRISHNAN P, et al. Synthesis of nanocrystalline copper-tungsten alloys by mechanical alloying[J]. Mater Sci Eng A Struct Mater, 2001, 304-306: 438-441. [31] KIM J C, MOON I H.Sintering of nanostructured W-Cu alloys prepared by mechanical alloying[J]. Nanostructured Materials, 1998, 10(2): 283-290. [32] RÖTHLISBERGER A, HÄBERLI S, KROGH F, et al. Ice-templated W-Cu composites with high anisotropy[J]. Scientific Reports, 2019, 9: 1-9. [33] MULLER A V, EWERT D, GALATANU A, et al.Melt infiltrated tungsten-copper composites as advanced heat sink materials for plasma facing components of future nuclear fusion devices[J]. Fusion Engineering and Design. 2017, 124: 455-459. [34] SHANG J H, YANG X Y, WANG Z Y, et al.Influence of the surface tungsten distribution on the emission properties of barium tungsten cathode[J]. IEEE Trans Electron Devices, 2020, 67(6): 2580-2584. [35] 刘燕文, 王国建, 田宏, 等. 激光驱动的新型光电阴极[J]. 中国科学: 信息科学, 2021, 51(9): 1575-1586. [36] 刘燕文, 孟宪展, 田宏, 等. 空间行波管极高真空的获得与测量[J]. 真空, 2018, 55(5): 25-28. [37] SHIN Y M, BARNETT L R, GAMZINA D, et al.Terahertz vacuum electronic circuits fabricated by UV lithographic molding and deep reactive ion etching[J]. Appl Phys Lett, 2009, 95(18): 181505. [38] 刘燕文, 田宏, 韩勇, 等. 新型的覆纳米粒子薄膜阴极的研究[J]. 物理学报, 2009, 58(12): 8635-8642. [39] LI J, YU Z Q, SHAO W S, et al.High current density M-type cathodes for vacuum electron devices[J]. Appl Surf Sci, 2005, 251(1-4): 151-158. [40] WANG X X, LIU Y W, LUO J R, et al.Preparation and evaluation of the ammonium perrhenate impregnated Ni sponge oxide cathode[J]. IEEE Trans Electron Devices, 2014, 61(2): 605-610. [41] 王小霞, 廖显恒, 罗积润, 等. 亚微米电子发射材料的合成及发射性能[J]. 物理学报, 2008, 57(3): 1924-1929. [42] ISAGAWA S, HIGUCHI T, KOBAYASHI K, et al.Application of M-type cathodes to high-power cw klystrons[J]. Appl Surf Sci, 1999, 146(1-4): 89-96. [43] LIU Y W, TIAN H, HAN Y, et al.Temperature variation of a thermionic cathode during electron emission[J]. Science in China Series E: Technological Sciences, 2008, 51: 1497-1501. [44] BARIK R K, BERA A, RAJU R S, et al.Development of alloy-film coated dispenser cathode for terahertz vacuum electron devices application[J]. Appl Surf Sci, 2013, 276: 817-822. [45] 刘燕文, 刘胜英, 田宏, 等. 用于空间行波管的高效率覆膜阴极组件的研究[J]. 真空科学与技术学报, 2006, 26(3): 240-242. [46] ZHANG M C, LIU Y W, YU S J, et al.Life test studies on dispenser cathode with dual-layer porous tungsten[J]. IEEE Trans Electron Devices, 2014, 61(8): 2983-2988. [47] 刘燕文, 王小霞, 朱虹, 等. 金刚石材料对螺旋线慢波组件散热性能的影响[J]. 物理学报, 2013, 62(23): 234402. [48] SHAO W S, ZHANG K, LI J, et al.Gas poisoning investigations of scandate and M-type dispenser cathodes[J]. Appl Surf Sci, 2003, 215(1-4): 54-58. [49] 刘燕文, 王小霞, 陆玉新, 等. 用于电真空器件的金属材料蒸发特性[J]. 物理学报, 2016, 65(6): 068502. [50] LIU Y W, TIAN H, HAN Y, et al.Study on the emission properties of the impregnated cathode with nanoparticle films[J]. IEEE Trans Electron Devices, 2012, 59(12): 3618-3624. [51] 刘燕文, 田宏, 韩勇, 等. 支取发射电流过程对热阴极温度影响的研究[J]. 中国科学E辑: 技术科学, 2008, 38(9): 1515-1520. [52] WANG J S, LIU W, LI L, et al.A study of scandia-doped pressed cathodes[J]. IEEE Trans Electron Devices, 2009, 56(5): 799-804. [53] 李玉涛, 张洪来, 刘濮鲲, 等. 中间层Re的加入对覆膜钡钨阴极性能的改善[J]. 物理学报, 2006, 55(12): 6677-6683. [54] 刘燕文, 田宏, 陆玉新, 等. 用于浸渍阴极的钨海绵基体的净化[J]. 真空科学与技术学报, 2018, 38(2): 144-149. [55] 刘燕文, 王小霞, 田宏, 等. 纳米粒子薄膜热电子发射性能[J]. 中国科学: 信息科学, 2015, 45(1): 145-156. [56] SZABO J.Explosive growth in electric propulsion[J]. Aerospace America, 2019, 57(11): 46. [57] LEVCHENKO I, KEIDAR M, CANTRELL J, et al.Explore space using swarms of tiny satellites[J]. Nature, 2018, 562: 185-187. [58] GOEBEL D M, JAMESON K K, HOFER R R.Hall thruster cathode flow impact on coupling voltage and cathode life[J]. J Propuls Power, 2012, 28(2): 355-363. [59] LEVCHENKO I, BAZAKA K, BELMONTE T, et al.Advanced materials for next-generation spacecraft[J]. Advanced Materials, 2018, 30(50): 1802201. [60] LEVCHENKO I, BAZAKA K, MAZOUFFRE S, et al.Prospects and physical mechanisms for photonic space propulsion[J]. Nat Photonics, 2018, 12: 649-657. [61] LEVCHENKO I, BAZAKA K, DING Y, et al.Space micropropulsion systems for cubesats and small satellites: from proximate targets to furthermost frontiers[J]. Appl Phys Rev, 2018, 5: 011104. [62] KREJCI D, MIER-HICKS F, THOMAS R, et al.Emission characteristics of passively fed electrospray microthrusters with propellant reservoirs[J]. J Spacecr Rockets, 2017, 54(2): 447-458. [63] CHEN C, CHEN M L, ZHOU H H.Characterization of an ionic liquid electrospray thruster with a porous ceramic emitter[J]. Plasma Science and Technology, 2020, 22(9): 094009. [64] POTRIVITU G C, XU L, HUANG S, et al.Discharge mode transition in a krypton-fed 1 A-class LaB6 cathode for low-power Hall thrusters for small satellites[J]. J Appl Phys, 2020, 127: 064501. [65] YANG B, GERMAN R M.Powder injection molding and infiltration sintering of superfine grain W-Cu[J]. International journal of powder metallurgy, 1997, 33(4): 55-63. [66] KIM D G, LEE K W, OH S T, et al.Preparation of W-Cu nanocomposite powder by hydrogen-reduction of ball-milled W and CuO powder mixture[J]. Mater Lett, 2004, 58(7/8): 1199-1203. [67] KIM J C, RYU S S, MOON I H.Nanostructural characteristics and sintering behavior of W-Cu composite powder prepared by mechanical alloying[J]. Journal of advanced materials, 1999, 31(4): 37-44. [68] LEE G G, HA G H, KIM B K.Synthesis of high density ultrafine W/Cu composite alloy by mechano-thermochemical process[J]. Powder metallurgy, 2000, 43(1): 79-82. [69] MELLADO E M, HORNUNG K, KISSEL J.Ion formation by high velocity impacts on porous metal targets[J]. Int J Impact Eng, 2006, 33(1-12): 419-430. [70] MUKHOPADHYAY A K, PHANI K K.An analysis of microstructural parameters in the minimum contact area model for ultrasonic velocity-porosity relations[J]. J Eur Ceram Soc, 2000, 20(1): 29-38. [71] 电子工业生产技术手册编委会. 电子工业生产技术手册(4): 电真空器件卷[M]. 北京: 国防工业出版社, 1990: 634. [72] 李曹兵, 王芦燕, 刘山宇. 钨粉射流分级及其在多孔钨制备中的应用[J]. 中国钨业, 2018, 33(5): 57-63. [73] 刘冰, 陈文革, 张志军. 钨铜合金表面纳米化及其性能分析[J]. 稀有金属材料与工程, 2015, 44(12): 3188-3191. [74] WANG Y L, LIANG S H, LUO N.Mechanical properties and thermal shock resistance of Zr, Cr doped WCu composite[J]. Rare Metal Materials and Engineering, 2016, 45(2): 329-332. [75] 刘燕文, 田宏, 李芬, 等. 钨海绵的浸铜方法及装置: CN202111095729.8[P].2021-09-18. [76] 电子工业生产技术手册编委会. 电子工业生产技术手册(4): 电真空器件卷[M]. 北京: 国防工业出版社, 1990: 317. [77] 刘燕文, 王小霞, 朱虹, 等. 钨海绵零件去铜的方法: CN201310208189.9[P].2015-07-29. [78] 张以忱. 真空蒸发镀膜[J]. 真空, 2013, 50(4): 86-88. [79] 刘燕文, 田宏, 韩勇, 等. 利用飞行时间质谱研究热阴极蒸发特性[J]. 真空科学与技术学报, 2007, 27(5): 437-441. [80] LIU Y W, WANG G J, TIAN H, et al.Evaporation characteristics of metallic materials for vacuum electron devices[J]. AIP Adv, 2021, 11(9): 095020. [81] 张以忱, 黄英. 真空材料[M]. 北京: 冶金工业出版社, 2005: 8. [82] LIU Y W, LI F, TIAN H et al. Influence of ion beam surface treatment on emission performance of photocathode[J]. Nanoscale Adv., 2022, 4: 3517-3523. |
[1] | TIAN Li-cheng, WANG Shang-min, GAO Jun, MENG Wei, TIAN Kai, WU Chen-chen. Development and Application of Micro-electric Propulsion System [J]. VACUUM, 2021, 58(2): 66-75. |
[2] | YU Sheng-bin, QIAO Bao-zhen, YU Qing-ming, ZHANG Bao-guo, WANG Ying-wu, QIAO Mu. Study on the Endpoint Judgment for Capacitor Vacuum Immersion Process by Using Water Molecular Mass Spectrometer [J]. VACUUM, 2020, 57(1): 11-16. |
[3] | SUI Wen, ZHANG Chi, LI Jian-chang. Design of a small-scale vacuum fabrication system specialized for studying organic light-emitting diodes [J]. VACUUM, 2019, 56(3): 6-9. |
[4] | HAN Feng, ZHANG Shi-wei, WANG De-xi, LIU Bo, WANG Meng. Dangerous industrial wastewater treatment based on vacuum evaporation technology [J]. VACUUM, 2019, 56(1): 67-71. |
|