欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2023, Vol. 60 ›› Issue (2): 1-13.doi: 10.13385/j.cnki.vacuum.2023.02.01

• Vacuum Technology Application •     Next Articles

Research Progress of the Porous Tungsten Materials and Parts

LIU Yan-wen1, LU Yu-xin2, ZHANG Xiao-lin1, MENG Ming-feng1, LI Fen1, ZHAO Heng-bang1, WANG Xiao-xia1   

  1. 1. Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China;
    2. Tianjin Traffic Vocational Institute,Tianjin 300110, China
  • Received:2022-04-24 Online:2023-03-25 Published:2023-03-27

Abstract: The porous metal materials are a new type of metal materials with excellent properties. This review briefly describes the preparation methods and applicability of several commonly used porous metal materials.Then the application of porous tungsten materials in the fields of microwave vacuum devices and space electric propulsion technology is introduced, and the existing problems in the preparation of porous tungsten materials are pointed out. In response to these problems, the preparation process of porous tungsten materials and parts is studied in depth. The tungsten powder is classified by the classification technology. The results of the laser particle size tester show that the size of classified tungsten powder particles is more concentrated. The gas purification and detection system can remove residual oxygen and water in the hydrogen gas, and reduce the dew point of hydrogen from -50℃ to below -90℃, which provides a good sintering atmosphere for preparing the non-oxidized tungsten sponge matrix. Porous tungsten materials are prepared by cold isostatic pressing technology and high temperature sintering, and the porosity of porous tungsten materials is studied by mercury porosimeter. The pore size distribution becomes narrower and the pore size becomes more uniform. The porous tungsten-copper alloy materials are prepared by vacuum impregnation. The impregnation rate is much higher than that of copper impregnation under the hydrogen condition, and the impregnation rate is increased by more than 4%. The tungsten copper alloy substrate is heated by a high frequency heating coil crucible localized firing. The results show that this technology has the advantages of no residual on substrate surface, short time, no pollution to furnaces and environmental. The porous tungsten have been successfully used in the microwave vacuum electron devices.

Key words: porous metal material, porous tungsten, electric propulsion, vacuum impregnation, vacuum evaporation

CLC Number: 

  • TN105.1
[1] SELCUK C, WOOD J V.Reactive sintering of porous tungsten:a cost effective sustainable technique for the manufacturing of high current density cathodes to be used in flashlamps[J]. J Mater Process Technol, 2005, 170(1/2): 471-476.
[2] LIU P S, CHEN G F.Porous materials: processing and applications[M]. 北京: 清华大学出版社, 2014: 113-188.
[3] GOODALL R, MORTENSEN A.Porous metals[M]//LAUGHLIN D E, HONO K. Physical Metallurgy. Elsevier, 2015: 2399-2595.
[4] LLYUSHCHANKO A P, CHARNIAK I M, KUSIN R A, et al.The process of obtaining of porous permeable materials by electric current sintering of metal powders, fibers and nets[C]//Journal of Physics: Conference Series. Omsk, Russian Federation: IOP Publishing, 2019, 1210(1): 012057.
[5] MURAKAMI T, OHARA K, NARUSHIMA T, et al.Development of a new method for manufacturing iron foam using gases generated by reduction of iron oxide[J]. Mater Trans, 2007, 48(11): 2937-2944.
[6] MURAKAMI T, AKAGI T, KASAI E.Development of porous iron based material by slag foaming and its reduction[J]. Procedia Materials Science, 2014, 4: 27-32.
[7] MURAKAMI T, TAKAHASHI T, FUJI S, et al.Development of manufacturing principle of porous iron by carbothermic reduction of composite of hematite and biomass char[J]. Mater Trans, 2017, 58(12): 1742-1748.
[8] KHABUSHAN J K, BONABI S B, AGHBAGH F M, et al.A study of fabricating and compressive properties of cellular Al-Si(355.0) foam using TiH2[J]. Materials & Design, 2014, 55: 792-797.
[9] YANG D H, YANG S R, WANG H, et al.Compressive properties of cellular Mg foams fabricated by melt-foaming method[J]. J Mater Sci Eng A, 2010, 527(21/22): 5405-5409.
[10] LARA-RODRIGUEZ G A, FIGUEROA I A, SUAREZ M A, et al. A replication-casting device for manufacturing open-cell Mg foams[J]. J Mater Process Technol, 2017, 243: 16-22.
[11] BANHART J.Manufacture,characterisation and application of cellular metals and metal foams[J]. Prog Mater Sci, 2001, 46(6): 559-632.
[12] YAMADA Y, SHIMOJIMA K, SAKAGUCHI Y, et al.Processing of an open-cellular AZ91 magnesium alloy with a low density of 0.05g/cm3[J]. J Mater Sci Lett, 1999, 18(18): 1477-1480.
[13] XU Y, MENON A S, HARKS P P R, et al. Honeycomb-like porous 3D nickel electrodeposition for stable Li and Na metal anodes[J]. Energy Storage Mater, 2018, 12: 69-78.
[14] LIU P S, LIANG K M.Review functional materials of porous metals made by P/M, electroplating and some other techniques[J]. J Mater Sci, 2001, 36(21): 5059-5072.
[15] LÜHRS L, WEISSMÜLLER J. Nanoporous copper-nickel-macroscopic bodies of a strong and deformable nanoporous base metal by dealloying[J]. Scr Mater, 2018, 155: 119-123.
[16] YUAN L, DING S, WEN C.Additive manufacturing technology for porous metal implant applications and triple minimal surface structures: a review[J]. Bioact Mater, 2019, 4: 56-70.
[17] YAN R Z, LUO D M, HUANG H T, et al.Electron beam melting in the fabrication of three-dimensional mesh titanium mandibular prosthesis scaffold[J]. Scientific Reports, 2018, 8: 750.
[18] ZHAO B, GAIN A K, DING W F, et al.A review on metallic porous materials: pore formation, mechanical properties, and their applications[J]. Int J Adv Manuf Technol, 2018, 95: 2641-2659.
[19] QIN J H, CHEN Q, YANG C Y, et al.Research process on property and application of metal porous materials[J]. J Alloys Compd, 2016, 654: 39-44.
[20] HUANG A Q, HE Y Z, ZHOU Y Z, et al.A review of recent applications of porous metals and metal oxide in energy storage, sensing and catalysis[J]. J Mater Sci, 2019, 54: 949-973.
[21] SINGH S, BHATNAGAR N.A survey of fabrication and application of metallic foams(1925-2017)[J]. J Porous Mater, 2018, 25: 537-554.
[22] KATO K, YAMAMOTO A, OCHIAI S, et al.Cytocompatibility and mechanical properties of novel porous 316L stainless steel[J]. Mater Sci Eng C Biomim Mater Sens Syst, 2013, 33(5): 2736-2743.
[23] MURR L E.Metallurgy principles applied to powder bed fusion 3D printing/additive manufacturing of personalized and optimized metal and alloy biomedical implants:an overview[J]. J Mater Res Technol, 2020, 9(1): 1087-1103.
[24] RASHIDI S, ESFAHANI J A, RASHIDI A.A review on the applications of porous materials in solar energy systems[J]. Renew Sustain Energy Rev, 2017, 73: 1198-1210.
[25] TAN W C, SAW L H, THIAM H S, et al.Overview of porous media/metal foam application in fuel cells and solar power systems[J]. Renew Sustain Energy Rev, 2018, 96: 181-197.
[26] ZHU W W, WANG H, ZHAO R, et al.In situ fabrication of nitrogen doped porous carbon nanorods derived from metal-organic frameworks and its application as supercapacitor electrodes[J]. J Solid State Chem, 2019, 277: 100-106.
[27] JIN W, MADURAIVEERAN G.Recent advances of porous transition metal-based nanomaterials for electrochemical energy conversion and storage applications[J]. Mater Today Energy, 2019, 13: 64-84.
[28] KECSKES L J, KLOTZ B R, CHO K C, et al.Densification and structural change of mechanically alloyed W-Cu composites[J]. Metall Mater Trans A, 2001, 32: 2885-2893.
[29] JOHNSON J L, GERMAN R M.Phase equilibria effects on the enhanced liquid phase sintering of tungsten-copper[J]. Metall Mater Trans A, 1993, 24: 2369-2377.
[30] RAGHU T, SUNDARESAN R, RAMAKRISHNAN P, et al. Synthesis of nanocrystalline copper-tungsten alloys by mechanical alloying[J]. Mater Sci Eng A Struct Mater, 2001, 304-306: 438-441.
[31] KIM J C, MOON I H.Sintering of nanostructured W-Cu alloys prepared by mechanical alloying[J]. Nanostructured Materials, 1998, 10(2): 283-290.
[32] RÖTHLISBERGER A, HÄBERLI S, KROGH F, et al. Ice-templated W-Cu composites with high anisotropy[J]. Scientific Reports, 2019, 9: 1-9.
[33] MULLER A V, EWERT D, GALATANU A, et al.Melt infiltrated tungsten-copper composites as advanced heat sink materials for plasma facing components of future nuclear fusion devices[J]. Fusion Engineering and Design. 2017, 124: 455-459.
[34] SHANG J H, YANG X Y, WANG Z Y, et al.Influence of the surface tungsten distribution on the emission properties of barium tungsten cathode[J]. IEEE Trans Electron Devices, 2020, 67(6): 2580-2584.
[35] 刘燕文, 王国建, 田宏, 等. 激光驱动的新型光电阴极[J]. 中国科学: 信息科学, 2021, 51(9): 1575-1586.
[36] 刘燕文, 孟宪展, 田宏, 等. 空间行波管极高真空的获得与测量[J]. 真空, 2018, 55(5): 25-28.
[37] SHIN Y M, BARNETT L R, GAMZINA D, et al.Terahertz vacuum electronic circuits fabricated by UV lithographic molding and deep reactive ion etching[J]. Appl Phys Lett, 2009, 95(18): 181505.
[38] 刘燕文, 田宏, 韩勇, 等. 新型的覆纳米粒子薄膜阴极的研究[J]. 物理学报, 2009, 58(12): 8635-8642.
[39] LI J, YU Z Q, SHAO W S, et al.High current density M-type cathodes for vacuum electron devices[J]. Appl Surf Sci, 2005, 251(1-4): 151-158.
[40] WANG X X, LIU Y W, LUO J R, et al.Preparation and evaluation of the ammonium perrhenate impregnated Ni sponge oxide cathode[J]. IEEE Trans Electron Devices, 2014, 61(2): 605-610.
[41] 王小霞, 廖显恒, 罗积润, 等. 亚微米电子发射材料的合成及发射性能[J]. 物理学报, 2008, 57(3): 1924-1929.
[42] ISAGAWA S, HIGUCHI T, KOBAYASHI K, et al.Application of M-type cathodes to high-power cw klystrons[J]. Appl Surf Sci, 1999, 146(1-4): 89-96.
[43] LIU Y W, TIAN H, HAN Y, et al.Temperature variation of a thermionic cathode during electron emission[J]. Science in China Series E: Technological Sciences, 2008, 51: 1497-1501.
[44] BARIK R K, BERA A, RAJU R S, et al.Development of alloy-film coated dispenser cathode for terahertz vacuum electron devices application[J]. Appl Surf Sci, 2013, 276: 817-822.
[45] 刘燕文, 刘胜英, 田宏, 等. 用于空间行波管的高效率覆膜阴极组件的研究[J]. 真空科学与技术学报, 2006, 26(3): 240-242.
[46] ZHANG M C, LIU Y W, YU S J, et al.Life test studies on dispenser cathode with dual-layer porous tungsten[J]. IEEE Trans Electron Devices, 2014, 61(8): 2983-2988.
[47] 刘燕文, 王小霞, 朱虹, 等. 金刚石材料对螺旋线慢波组件散热性能的影响[J]. 物理学报, 2013, 62(23): 234402.
[48] SHAO W S, ZHANG K, LI J, et al.Gas poisoning investigations of scandate and M-type dispenser cathodes[J]. Appl Surf Sci, 2003, 215(1-4): 54-58.
[49] 刘燕文, 王小霞, 陆玉新, 等. 用于电真空器件的金属材料蒸发特性[J]. 物理学报, 2016, 65(6): 068502.
[50] LIU Y W, TIAN H, HAN Y, et al.Study on the emission properties of the impregnated cathode with nanoparticle films[J]. IEEE Trans Electron Devices, 2012, 59(12): 3618-3624.
[51] 刘燕文, 田宏, 韩勇, 等. 支取发射电流过程对热阴极温度影响的研究[J]. 中国科学E辑: 技术科学, 2008, 38(9): 1515-1520.
[52] WANG J S, LIU W, LI L, et al.A study of scandia-doped pressed cathodes[J]. IEEE Trans Electron Devices, 2009, 56(5): 799-804.
[53] 李玉涛, 张洪来, 刘濮鲲, 等. 中间层Re的加入对覆膜钡钨阴极性能的改善[J]. 物理学报, 2006, 55(12): 6677-6683.
[54] 刘燕文, 田宏, 陆玉新, 等. 用于浸渍阴极的钨海绵基体的净化[J]. 真空科学与技术学报, 2018, 38(2): 144-149.
[55] 刘燕文, 王小霞, 田宏, 等. 纳米粒子薄膜热电子发射性能[J]. 中国科学: 信息科学, 2015, 45(1): 145-156.
[56] SZABO J.Explosive growth in electric propulsion[J]. Aerospace America, 2019, 57(11): 46.
[57] LEVCHENKO I, KEIDAR M, CANTRELL J, et al.Explore space using swarms of tiny satellites[J]. Nature, 2018, 562: 185-187.
[58] GOEBEL D M, JAMESON K K, HOFER R R.Hall thruster cathode flow impact on coupling voltage and cathode life[J]. J Propuls Power, 2012, 28(2): 355-363.
[59] LEVCHENKO I, BAZAKA K, BELMONTE T, et al.Advanced materials for next-generation spacecraft[J]. Advanced Materials, 2018, 30(50): 1802201.
[60] LEVCHENKO I, BAZAKA K, MAZOUFFRE S, et al.Prospects and physical mechanisms for photonic space propulsion[J]. Nat Photonics, 2018, 12: 649-657.
[61] LEVCHENKO I, BAZAKA K, DING Y, et al.Space micropropulsion systems for cubesats and small satellites: from proximate targets to furthermost frontiers[J]. Appl Phys Rev, 2018, 5: 011104.
[62] KREJCI D, MIER-HICKS F, THOMAS R, et al.Emission characteristics of passively fed electrospray microthrusters with propellant reservoirs[J]. J Spacecr Rockets, 2017, 54(2): 447-458.
[63] CHEN C, CHEN M L, ZHOU H H.Characterization of an ionic liquid electrospray thruster with a porous ceramic emitter[J]. Plasma Science and Technology, 2020, 22(9): 094009.
[64] POTRIVITU G C, XU L, HUANG S, et al.Discharge mode transition in a krypton-fed 1 A-class LaB6 cathode for low-power Hall thrusters for small satellites[J]. J Appl Phys, 2020, 127: 064501.
[65] YANG B, GERMAN R M.Powder injection molding and infiltration sintering of superfine grain W-Cu[J]. International journal of powder metallurgy, 1997, 33(4): 55-63.
[66] KIM D G, LEE K W, OH S T, et al.Preparation of W-Cu nanocomposite powder by hydrogen-reduction of ball-milled W and CuO powder mixture[J]. Mater Lett, 2004, 58(7/8): 1199-1203.
[67] KIM J C, RYU S S, MOON I H.Nanostructural characteristics and sintering behavior of W-Cu composite powder prepared by mechanical alloying[J]. Journal of advanced materials, 1999, 31(4): 37-44.
[68] LEE G G, HA G H, KIM B K.Synthesis of high density ultrafine W/Cu composite alloy by mechano-thermochemical process[J]. Powder metallurgy, 2000, 43(1): 79-82.
[69] MELLADO E M, HORNUNG K, KISSEL J.Ion formation by high velocity impacts on porous metal targets[J]. Int J Impact Eng, 2006, 33(1-12): 419-430.
[70] MUKHOPADHYAY A K, PHANI K K.An analysis of microstructural parameters in the minimum contact area model for ultrasonic velocity-porosity relations[J]. J Eur Ceram Soc, 2000, 20(1): 29-38.
[71] 电子工业生产技术手册编委会. 电子工业生产技术手册(4): 电真空器件卷[M]. 北京: 国防工业出版社, 1990: 634.
[72] 李曹兵, 王芦燕, 刘山宇. 钨粉射流分级及其在多孔钨制备中的应用[J]. 中国钨业, 2018, 33(5): 57-63.
[73] 刘冰, 陈文革, 张志军. 钨铜合金表面纳米化及其性能分析[J]. 稀有金属材料与工程, 2015, 44(12): 3188-3191.
[74] WANG Y L, LIANG S H, LUO N.Mechanical properties and thermal shock resistance of Zr, Cr doped WCu composite[J]. Rare Metal Materials and Engineering, 2016, 45(2): 329-332.
[75] 刘燕文, 田宏, 李芬, 等. 钨海绵的浸铜方法及装置: CN202111095729.8[P].2021-09-18.
[76] 电子工业生产技术手册编委会. 电子工业生产技术手册(4): 电真空器件卷[M]. 北京: 国防工业出版社, 1990: 317.
[77] 刘燕文, 王小霞, 朱虹, 等. 钨海绵零件去铜的方法: CN201310208189.9[P].2015-07-29.
[78] 张以忱. 真空蒸发镀膜[J]. 真空, 2013, 50(4): 86-88.
[79] 刘燕文, 田宏, 韩勇, 等. 利用飞行时间质谱研究热阴极蒸发特性[J]. 真空科学与技术学报, 2007, 27(5): 437-441.
[80] LIU Y W, WANG G J, TIAN H, et al.Evaporation characteristics of metallic materials for vacuum electron devices[J]. AIP Adv, 2021, 11(9): 095020.
[81] 张以忱, 黄英. 真空材料[M]. 北京: 冶金工业出版社, 2005: 8.
[82] LIU Y W, LI F, TIAN H et al. Influence of ion beam surface treatment on emission performance of photocathode[J]. Nanoscale Adv., 2022, 4: 3517-3523.
[1] TIAN Li-cheng, WANG Shang-min, GAO Jun, MENG Wei, TIAN Kai, WU Chen-chen. Development and Application of Micro-electric Propulsion System [J]. VACUUM, 2021, 58(2): 66-75.
[2] YU Sheng-bin, QIAO Bao-zhen, YU Qing-ming, ZHANG Bao-guo, WANG Ying-wu, QIAO Mu. Study on the Endpoint Judgment for Capacitor Vacuum Immersion Process by Using Water Molecular Mass Spectrometer [J]. VACUUM, 2020, 57(1): 11-16.
[3] SUI Wen, ZHANG Chi, LI Jian-chang. Design of a small-scale vacuum fabrication system specialized for studying organic light-emitting diodes [J]. VACUUM, 2019, 56(3): 6-9.
[4] HAN Feng, ZHANG Shi-wei, WANG De-xi, LIU Bo, WANG Meng. Dangerous industrial wastewater treatment based on vacuum evaporation technology [J]. VACUUM, 2019, 56(1): 67-71.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[4] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[5] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .
[6] XU Fa-jian, WANG Hai-lei, ZHAO Cai-xia, HUANG Zhi-ting. Application of chemical gases vacuum-compression recovery system in environmental engineering[J]. VACUUM, 2018, 55(5): 29 -33 .
[7] XIE Yuan-hua, HAN Jin, ZHANG Zhi-jun, XU Cheng-hai. Discussion on present situation and development trend of vacuum conveying[J]. VACUUM, 2018, 55(5): 34 -37 .
[8] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[9] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[10] CHANG Zhen-dong, MU Ren-de, HE Li-min, HUANG Guang-hong, LI Jian-ping. Reflectance spectroscopy study on TBCs prepared by EB-PVD[J]. VACUUM, 2018, 55(5): 46 -50 .