VACUUM ›› 2023, Vol. 60 ›› Issue (2): 14-19.doi: 10.13385/j.cnki.vacuum.2023.02.02
• Vacuum Technology Application • Previous Articles Next Articles
LEI Cheng-shuai1, CHEN Guo-xin2, LU Xing-yu1, ZHOU Li-na3, HUANG Ju4, LIU Hong-wei1
CLC Number:
[1] 李正邦. 真空冶金新进展[J]. 特殊钢, 1999(4): 1-6. [2] STRAUSS K.Applied Science in the Casting of Metals[M]. Oxford: Pergamon Press, 1970: 69-85. [3] 傅杰. 真空熔炼的近期进展[J]. 真空, 1991(3): 1-10. [4] GRUBER H.Consumable-electrode vacuum arc melting[J]. JOM, 1958, 10(3): 193-198. [5] LI J, GUO F, LI Z, et al.Influence of sizes of inclusions and voids on fracture toughness of ultra-high strength steel aerMet100[J]. Journal of Iron and Steel Research, International, 2007, 14(5): 254-258. [6] SCHLATTER R.Vacuum melting of specialty steels[J]. JOM, 1970, 22(4): 33-39. [7] 姜周华, 康从鹏, 刘福斌, 等. 特种冶金生产流程的发展趋势[J]. 材料与冶金学报, 2021, 20(1): 1-8. [8] DYRKACZ W W.Vacuum melting in the steel industry today[J]. JOM, 1957, 9(12): 1513-1516. [9] KLISIEWICZ Z,LIPOWCZAN K.The effect of vacuum degassing on the quality of steel[J]. Wiadomosci Hutnicze, 1973, 29(9): 296-299. [10] KATO Y, MASUDA T, KAWAKAMI K, et al.Recent improvements in cleanliness in high carbon chromium bearing Steel[J]. ISIJ International, 1996, 36: 89-92. [11] 屈志东, 谢有, 孟晓玲, 等. 高品质轴承钢BOF-LF-RH-CC和EAF-LF-VD-CC工艺夹杂物演变规律[J]. 炼钢, 2020, 36(2): 76-80. [12] TANAKA Y, SATO I.Development of high purity large forgings for nuclear power plants[J]. Journal of Nuclear Materials, 2011, 417(1-3): 854-859. [13] 黄飞. SA508M.Gr.3CL.2钢锭冶炼生产实践[J]. 钢铁研究, 2017, 45(6): 44-49. [14] 王飞, 李建新, 张玉春. 抚顺特钢高强钢及超高强度钢发展现状[J]. 特殊钢, 2021, 42(5): 30-35. [15] GARRISON W M.Ultrahigh-strength steels for aerospace applications[J]. JOM, 1990, 42(5): 20-24. [16] BHADESHIA H K D H. Steels for bearings[J]. Progress in materials science, 2012, 57(2): 268-435. [17] OTZISK B, GOURZOULIDOU A, DEAN F, et al.Hydrogen-induced cracking and blistering[J]. Petroleum Technology Quarterly, 2009, 14(3): 79-83. [18] TAKEDA K.Recent developments of steelmaking technology and the situation of special steel in Japan[J]. Transactions of the Iron and Steel Institute of Japan, 1979, 19(8): 455-463. [19] 岳江波, 陈子宏, 甘晓龙. 用氧化镁坩埚真空熔炼优质低碳低氧钢[J]. 钢铁研究, 2013, 41(3): 26-28. [20] 薛正良, 李正邦, 张家雯, 等. 用氧化钙坩埚真空感应熔炼超低氧钢的脱氧动力学[J]. 钢铁研究学报, 2003, 15(5): 5-13. [21] 牛宇豪, 王海军. 纯铁的国内外研究进展及发展趋势[J]. 电工钢, 2022, 4(3): 29-33. [22] BANNENBERG N, BERGMANN B, GAYE H.Combined decrease of sulphur, nitrogen, hydrogen and total oxygen in only one secondary steelmaking operation[J]. Steel Research, 1992, 63(10): 431-437. [23] YU S, MIETTINEN J, SHAO L, et al.Mathematical modeling of nitrogen removal from the vacuum tank degasser[J]. Steel Research International, 2015, 86(5): 466-477. [24] KLEIMT B, KÖHLE S, JOHANN K P, et al. Dynamic process model for denitrogenation and dehydrogenation by vacuum degassing[J]. Scandinavian Journal of Metallurgy, 2000, 29(5): 194-205. [25] UESUGI T.Recent development of bearing steel in Japan[J]. ISIJ International, 1988, 28(11): 893-899. [26] 刘浏. 高品质特殊钢生产流程技术研究[J]. 中国冶金, 2011, 21(12): 11-14. [27] KAWAKAMI K.Generation mechanisms of non-metallic inclusions in high-cleanliness steel[J].Sanyo Technical Report, 2007, 14(1): 22-35. [28] Beswick J M.Bearing steel technology[M]. New York: ASTM International, 2014,1-27. [29] 王郢, 王昆鹏, 陈廷军, 等. 90t EAF→LF→VD→CCM流程冶炼GCr15轴承钢非金属夹杂物演变[J]. 炼钢, 2022, 38(3): 58-61. [30] 王昆鹏, 王海洋, 徐建飞, 等. 120t BOF-LF-RH-CC流程GCr15轴承钢洁净度研究[J]. 特殊钢, 2021, 42(2): 14-17. [31] 王前, 韩伦杰, 路建强. 高洁净度轴承钢GCr15的生产[J]. 河北冶金, 2022, 319(7): 39-43. [32] HE X, WANG M, HU C, et al.Study of the relationship among total oxygen, inclusions and fatigue properties of gear steel[J]. Materials Science and Engineering: A, 2021, 827: 141999. [33] WANG P, WANG B, LIU Y, et al.Effects of inclusion types on the high-cycle fatigue properties of high-strength steel[J]. Scripta Materialia, 2022, 206: 1-6. [34] 俞峰, 陈兴品, 徐海峰, 等. 滚动轴承钢冶金质量与疲劳性能现状及高端轴承钢发展方向[J]. 金属学报, 2020, 56(4): 513-522. [35] 王新华, 姜敏, 于会香, 等. 超低氧特殊钢中非金属夹杂物研究[J]. 炼钢, 2015, 31(6): 1-12. [36] 李昭昆, 雷建中, 徐海峰, 等. 国内外轴承钢的现状与发展趋势[J]. 钢铁研究学报, 2016, 28(3): 1-12. [37] 温昕, 任英, 张立峰. GCr15轴承钢RH和VD真空精炼过程钢洁净度对比[J]. 钢铁研究学报, 2022, 34(7): 613-621. [38] LI D, WANG P, CHEN X, et al.Low-oxygen rare earth steels[J]. Nature Materials, 2022, 21(10): 1137-1143. [39] 谢云飞, 金杨, 刘宏伟, 等. 高品质超大型SA508-Ⅲ钢锭试制[C]//第五届钢锭与锻件生产新工艺、新技术峰会, 2020. [40] 张文奇. 中间包塞棒吹氩在钢锭真空浇注中的应用[J]. 大型铸锻件, 2009(5): 36-37. [41] 生方貴, 鈴木忠, 上田奏. 大型鋼塊製造における脱水素速度の向上[J]. 日本製鋼所技報, 2009(60): 8-14. [42] 王宝忠, 高建军, 刘海澜. 超大型钢锭极端制造的回顾与展望[C]//2014年钢锭制造技术与管理研讨会论文集, 2014: 56-63. [43] CHOUDHURY A.State of the art of superalloy production for aerospace and other application using VIM/VAR or VIM/ESR[J]. ISIJ international, 1992, 32(5): 563-574. [44] 张维维, 廖相巍, 贾吉祥, 等. 工业纯铁及超纯铁的研发进展[J]. 鞍钢技术, 2015(3): 6-11. [45] GAO J, FU P, LIU H, LI D.The preparation of ultra-low oxygen steel ingot with a new compound rare earth deoxidizer[C]. 19th International Forgemasters Meeting, Japan, 2014,59-63. [46] 姜周华, 龚伟, 王承, 等. 超高强度钢高纯净熔炼技术[J]. 航空材料学报, 2017, 37(6): 7-15. [47] 宋静思, 左野, 应冰, 等. 真空感应熔炼炉主流结构及未来发展[J]. 真空, 2022, 59(4): 70-75. [48] DESCOTES V, QUATRAVAUX T, BELLOT J, et al.Titanium nitride(TiN)germination and growth during vacuum arc remelting of a maraging steel[J]. Metals, 2020, 10(4): 541. [49] KELKAR K M, PATANKAR S V, MITCHELL A, et al.Computational modeling of the vacuum arc remelting(VAR)process used for the production of ingots of Titanium alloys[C]//Proceedings of the Ti-2007 Conference, 2007. |
[1] | E Dong-mei. Application of Vacuum Technology in Aerospace [J]. VACUUM, 2021, 58(3): 77-81. |
|