欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2023, Vol. 60 ›› Issue (2): 14-19.doi: 10.13385/j.cnki.vacuum.2023.02.02

• Vacuum Technology Application • Previous Articles     Next Articles

The Application and Development of Vacuum Technology in Production Process of High-quality Steels

LEI Cheng-shuai1, CHEN Guo-xin2, LU Xing-yu1, ZHOU Li-na3, HUANG Ju4, LIU Hong-wei1   

  1. 1. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China;
    2. Qingdao Premier Bearing Institute, Qingdao 266406, China;
    3. AECC Harbin Bearing Co., Ltd., Harbin 150025, China;
    4. AECC Guiyang Engine Design Research Institute, Guiyang 550081, China
  • Received:2022-12-05 Online:2023-03-25 Published:2023-03-27

Abstract: The application of vacuum technology in metallurgy can effectively reduce the content of gas element and inclusions in steels and it has been widely used for producing high quality steels. The development process and the application of vacuum technology in metallurgy were reviewed and the purification principle of vacuum metallurgy was introduced in this paper. The application of vacuum technology has significantly improved the metallurgy technology in China. At present, the production process of high-quality steel in China has achieved the control level of T.O<10 ppm in large vacuum steel ingots, and T.O≤5 ppm in continuous casting billets and vacuum consumable ingots.The quality of the special steel can meet the requirements for materials with excellent performance in the key fields.

Key words: vacuum technology, high-quality steel, large vacuum steel ingots, continuous casting billets, vacuum consumable ingots

CLC Number: 

  • TB751
[1] 李正邦. 真空冶金新进展[J]. 特殊钢, 1999(4): 1-6.
[2] STRAUSS K.Applied Science in the Casting of Metals[M]. Oxford: Pergamon Press, 1970: 69-85.
[3] 傅杰. 真空熔炼的近期进展[J]. 真空, 1991(3): 1-10.
[4] GRUBER H.Consumable-electrode vacuum arc melting[J]. JOM, 1958, 10(3): 193-198.
[5] LI J, GUO F, LI Z, et al.Influence of sizes of inclusions and voids on fracture toughness of ultra-high strength steel aerMet100[J]. Journal of Iron and Steel Research, International, 2007, 14(5): 254-258.
[6] SCHLATTER R.Vacuum melting of specialty steels[J]. JOM, 1970, 22(4): 33-39.
[7] 姜周华, 康从鹏, 刘福斌, 等. 特种冶金生产流程的发展趋势[J]. 材料与冶金学报, 2021, 20(1): 1-8.
[8] DYRKACZ W W.Vacuum melting in the steel industry today[J]. JOM, 1957, 9(12): 1513-1516.
[9] KLISIEWICZ Z,LIPOWCZAN K.The effect of vacuum degassing on the quality of steel[J]. Wiadomosci Hutnicze, 1973, 29(9): 296-299.
[10] KATO Y, MASUDA T, KAWAKAMI K, et al.Recent improvements in cleanliness in high carbon chromium bearing Steel[J]. ISIJ International, 1996, 36: 89-92.
[11] 屈志东, 谢有, 孟晓玲, 等. 高品质轴承钢BOF-LF-RH-CC和EAF-LF-VD-CC工艺夹杂物演变规律[J]. 炼钢, 2020, 36(2): 76-80.
[12] TANAKA Y, SATO I.Development of high purity large forgings for nuclear power plants[J]. Journal of Nuclear Materials, 2011, 417(1-3): 854-859.
[13] 黄飞. SA508M.Gr.3CL.2钢锭冶炼生产实践[J]. 钢铁研究, 2017, 45(6): 44-49.
[14] 王飞, 李建新, 张玉春. 抚顺特钢高强钢及超高强度钢发展现状[J]. 特殊钢, 2021, 42(5): 30-35.
[15] GARRISON W M.Ultrahigh-strength steels for aerospace applications[J]. JOM, 1990, 42(5): 20-24.
[16] BHADESHIA H K D H. Steels for bearings[J]. Progress in materials science, 2012, 57(2): 268-435.
[17] OTZISK B, GOURZOULIDOU A, DEAN F, et al.Hydrogen-induced cracking and blistering[J]. Petroleum Technology Quarterly, 2009, 14(3): 79-83.
[18] TAKEDA K.Recent developments of steelmaking technology and the situation of special steel in Japan[J]. Transactions of the Iron and Steel Institute of Japan, 1979, 19(8): 455-463.
[19] 岳江波, 陈子宏, 甘晓龙. 用氧化镁坩埚真空熔炼优质低碳低氧钢[J]. 钢铁研究, 2013, 41(3): 26-28.
[20] 薛正良, 李正邦, 张家雯, 等. 用氧化钙坩埚真空感应熔炼超低氧钢的脱氧动力学[J]. 钢铁研究学报, 2003, 15(5): 5-13.
[21] 牛宇豪, 王海军. 纯铁的国内外研究进展及发展趋势[J]. 电工钢, 2022, 4(3): 29-33.
[22] BANNENBERG N, BERGMANN B, GAYE H.Combined decrease of sulphur, nitrogen, hydrogen and total oxygen in only one secondary steelmaking operation[J]. Steel Research, 1992, 63(10): 431-437.
[23] YU S, MIETTINEN J, SHAO L, et al.Mathematical modeling of nitrogen removal from the vacuum tank degasser[J]. Steel Research International, 2015, 86(5): 466-477.
[24] KLEIMT B, KÖHLE S, JOHANN K P, et al. Dynamic process model for denitrogenation and dehydrogenation by vacuum degassing[J]. Scandinavian Journal of Metallurgy, 2000, 29(5): 194-205.
[25] UESUGI T.Recent development of bearing steel in Japan[J]. ISIJ International, 1988, 28(11): 893-899.
[26] 刘浏. 高品质特殊钢生产流程技术研究[J]. 中国冶金, 2011, 21(12): 11-14.
[27] KAWAKAMI K.Generation mechanisms of non-metallic inclusions in high-cleanliness steel[J].Sanyo Technical Report, 2007, 14(1): 22-35.
[28] Beswick J M.Bearing steel technology[M]. New York: ASTM International, 2014,1-27.
[29] 王郢, 王昆鹏, 陈廷军, 等. 90t EAF→LF→VD→CCM流程冶炼GCr15轴承钢非金属夹杂物演变[J]. 炼钢, 2022, 38(3): 58-61.
[30] 王昆鹏, 王海洋, 徐建飞, 等. 120t BOF-LF-RH-CC流程GCr15轴承钢洁净度研究[J]. 特殊钢, 2021, 42(2): 14-17.
[31] 王前, 韩伦杰, 路建强. 高洁净度轴承钢GCr15的生产[J]. 河北冶金, 2022, 319(7): 39-43.
[32] HE X, WANG M, HU C, et al.Study of the relationship among total oxygen, inclusions and fatigue properties of gear steel[J]. Materials Science and Engineering: A, 2021, 827: 141999.
[33] WANG P, WANG B, LIU Y, et al.Effects of inclusion types on the high-cycle fatigue properties of high-strength steel[J]. Scripta Materialia, 2022, 206: 1-6.
[34] 俞峰, 陈兴品, 徐海峰, 等. 滚动轴承钢冶金质量与疲劳性能现状及高端轴承钢发展方向[J]. 金属学报, 2020, 56(4): 513-522.
[35] 王新华, 姜敏, 于会香, 等. 超低氧特殊钢中非金属夹杂物研究[J]. 炼钢, 2015, 31(6): 1-12.
[36] 李昭昆, 雷建中, 徐海峰, 等. 国内外轴承钢的现状与发展趋势[J]. 钢铁研究学报, 2016, 28(3): 1-12.
[37] 温昕, 任英, 张立峰. GCr15轴承钢RH和VD真空精炼过程钢洁净度对比[J]. 钢铁研究学报, 2022, 34(7): 613-621.
[38] LI D, WANG P, CHEN X, et al.Low-oxygen rare earth steels[J]. Nature Materials, 2022, 21(10): 1137-1143.
[39] 谢云飞, 金杨, 刘宏伟, 等. 高品质超大型SA508-Ⅲ钢锭试制[C]//第五届钢锭与锻件生产新工艺、新技术峰会, 2020.
[40] 张文奇. 中间包塞棒吹氩在钢锭真空浇注中的应用[J]. 大型铸锻件, 2009(5): 36-37.
[41] 生方貴, 鈴木忠, 上田奏. 大型鋼塊製造における脱水素速度の向上[J]. 日本製鋼所技報, 2009(60): 8-14.
[42] 王宝忠, 高建军, 刘海澜. 超大型钢锭极端制造的回顾与展望[C]//2014年钢锭制造技术与管理研讨会论文集, 2014: 56-63.
[43] CHOUDHURY A.State of the art of superalloy production for aerospace and other application using VIM/VAR or VIM/ESR[J]. ISIJ international, 1992, 32(5): 563-574.
[44] 张维维, 廖相巍, 贾吉祥, 等. 工业纯铁及超纯铁的研发进展[J]. 鞍钢技术, 2015(3): 6-11.
[45] GAO J, FU P, LIU H, LI D.The preparation of ultra-low oxygen steel ingot with a new compound rare earth deoxidizer[C]. 19th International Forgemasters Meeting, Japan, 2014,59-63.
[46] 姜周华, 龚伟, 王承, 等. 超高强度钢高纯净熔炼技术[J]. 航空材料学报, 2017, 37(6): 7-15.
[47] 宋静思, 左野, 应冰, 等. 真空感应熔炼炉主流结构及未来发展[J]. 真空, 2022, 59(4): 70-75.
[48] DESCOTES V, QUATRAVAUX T, BELLOT J, et al.Titanium nitride(TiN)germination and growth during vacuum arc remelting of a maraging steel[J]. Metals, 2020, 10(4): 541.
[49] KELKAR K M, PATANKAR S V, MITCHELL A, et al.Computational modeling of the vacuum arc remelting(VAR)process used for the production of ingots of Titanium alloys[C]//Proceedings of the Ti-2007 Conference, 2007.
[1] E Dong-mei. Application of Vacuum Technology in Aerospace [J]. VACUUM, 2021, 58(3): 77-81.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[4] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[5] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .
[6] XU Fa-jian, WANG Hai-lei, ZHAO Cai-xia, HUANG Zhi-ting. Application of chemical gases vacuum-compression recovery system in environmental engineering[J]. VACUUM, 2018, 55(5): 29 -33 .
[7] XIE Yuan-hua, HAN Jin, ZHANG Zhi-jun, XU Cheng-hai. Discussion on present situation and development trend of vacuum conveying[J]. VACUUM, 2018, 55(5): 34 -37 .
[8] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[9] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[10] CHANG Zhen-dong, MU Ren-de, HE Li-min, HUANG Guang-hong, LI Jian-ping. Reflectance spectroscopy study on TBCs prepared by EB-PVD[J]. VACUUM, 2018, 55(5): 46 -50 .