欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2023, Vol. 60 ›› Issue (2): 45-50.doi: 10.13385/j.cnki.vacuum.2023.02.08

• Vacuum Acquisition System • Previous Articles     Next Articles

Mass Spectrometry Analysis for Wall Conditioning in HL-2A Tokamak

ZHOU Jun, CAO Zeng, CAO Cheng-zhi, HUANG Xiang-mei, GAO Xiao-yan, HU Yi   

  1. Southwestern Institute of Physics, Chengdu 610041, China
  • Received:2022-04-26 Online:2023-03-25 Published:2023-03-27

Abstract: In order to analyze the wall conditioning effect of HL-2A device after its upgrading, the residual gas during or before and after wall conditioning of HL-2A device was measured by quadrupole mass spectrometer, and the effect of wall conditioning was analyzed. The change of gas component during DC glow discharge cleaning was analyzed by particle equilibrium equation and mass spectrogram. The performance of the wall conditioning of HL-2A device was studied and the helium deuterium ratio parameter of the He+D2-GDC was optimized. The results show that the percentage of H2O in the residual gas in HL-2A decreases from 92% to 56%, and the vacuum of the vacuum vessel reaches 2.2×10-5Pa. In different stages, H2-GDC,He-GDC and He+D2-GDC eliminate the adverse effects of vacuum inner parts upgrading on wall conditioning,and ensure the plasma discharge experiment of HL-2A device.

Key words: HL-2A Tokamak, wall conditioning, mass spectrometry analysis, glow discharge cleaning, siliconization

CLC Number: 

  • TL62+8
[1] 朱毓坤. 核真空科学技术[M]. 北京: 原子能出版社, 2010.
[2] HONG S H, KIM K P, KIM K M, et al.Initial phase wall conditioning in KSTAR[J]. Nuclear Fusion, 2011, 51(10): 103027.
[3] 毕海林, 胡建生, 余耀伟, 等. HT-7托卡马克全金属壁及锂化条件下辉光放电清洗的研究[J]. 真空科学与技术学报, 2014, 34(7): 731-736.
[4] 李加宏, 胡建生, 王小明, 等. EAST超导托卡马克装置真空室壁处理的研究[J]. 物理学报, 2012, 61(20): 205203.
[5] ANTIPENKOV A B, LADD P, MARRS R. ITER glow discharge cleaning system[J]. Fusion Engineering and Design, 2001, 56/57: 233-238.
[6] KHAN Z, GEORGE S, SEMWAL P, et al.Conditioning of SST-1 tokamak vacuum vessel by baking and glow discharge cleaning[J]. Fusion Engineering and Design, 2016, 103: 69-73.
[7] HARTL T, DRENIK A, KIRCHER M, et al.Optimization of the ASDEX upgrade glow discharge[J]. Fusion Engineering and Design, 2017, 124: 283-286.
[8] WAUTERS T, MATVEEV D, DOUAI D, et al.Isotope removal experiment in JET-ILW in view of T-removal after the 2nd DT campaign at JET[J]. Physica Scripta, 2022, 97: 044001.
[9] DYLLA H F.Glow discharge techniques for conditioning high-vacuum systems[J]. Journal of Vacuum Science and Technology, 1988, 6(3): 1276-1287.
[10] 王明旭, 许增裕, 谌继明, 等. HL-2A装置第一壁石墨组件研究[J]. 核聚变与等离子体物理, 2004, 24(1): 24-28.
[11] 李强. HL-2A托卡马克装置的工程和实验概况[J]. 原子能科学技术, 2009(增刊2): 6.
[12] 曹曾, 崔成和, 徐云仙, 等. HL-2A托卡马克装置真空系统[J]. 核聚变与等离子体物理, 2005, 25(1): 59-64.
[13] 高霄雁, 崔成和, 胡毅. HL-2A装置直流辉光自动调节控制系统[J]. 真空科学与技术学报, 2019, 39(11): 1027-1032.
[14] 曹曾, 崔成和, 蔡萧, 等. HL-2A装置真空和壁处理系统[C]//中国真空学会2008年学术年会论文摘要集, 2008.
[15] 刘德权, 曹曾, 周才品, 等. HL-2A托卡马克真空系统烘烤试验[J]. 真空, 2003(2): 31-34.
[16] 颉延风, 田培红, 唐芳群, 等. HL-2A托卡马克真空烘烤除气性能研究[J]. 真空, 2015, 52(1): 48-52.
[17] WANG J R, YU Y W, WANG H Y, et al.Study of the tungsten sputtering source suppression by wall conditionings in the EAST tokamak[J]. Plasma Science and Technology, 2021, 23(5): 055101.
[18] 曹曾, 崔成和, 蔡萧, 等. HL-2A装置器壁硅化实验研究[C]//中国真空学会2006年学术会议论文摘要集, 2006.
[19] DUAN X R, CAO Z, CUI C H, et al. Siliconization for wall conditioning and its effect on plasma performance in HL-2A Tokamak[J]. Journal of Nuclear Materials, 2007, 363/364/365: 1340-1345.
[20] 王明旭, 张年满. HL-1M装置原位硅化涂层的研究[J]. 真空与低温, 1998, 4(3): 4.
[1] REN Guo-hua, LI Zheng, SUN Li-zhi, DOU Ren-chao, MENG Dong-hui, ZHANG Hai-feng, ZHAO Yue-shuai. Study on leak detection method of heat pipe [J]. VACUUM, 2019, 56(4): 6-9.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[4] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[5] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .
[6] XU Fa-jian, WANG Hai-lei, ZHAO Cai-xia, HUANG Zhi-ting. Application of chemical gases vacuum-compression recovery system in environmental engineering[J]. VACUUM, 2018, 55(5): 29 -33 .
[7] XIE Yuan-hua, HAN Jin, ZHANG Zhi-jun, XU Cheng-hai. Discussion on present situation and development trend of vacuum conveying[J]. VACUUM, 2018, 55(5): 34 -37 .
[8] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[9] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[10] CHANG Zhen-dong, MU Ren-de, HE Li-min, HUANG Guang-hong, LI Jian-ping. Reflectance spectroscopy study on TBCs prepared by EB-PVD[J]. VACUUM, 2018, 55(5): 46 -50 .