欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2023, Vol. 60 ›› Issue (2): 78-85.doi: 10.13385/j.cnki.vacuum.2023.02.14

• Vacuum Metallurgy and Thermal Engineering • Previous Articles     Next Articles

Interpretation of AMS2750F and Development of Temperature Sensor

SU Fei, WANG Kui-han, XIA Chun-ming, ZHAO Xiao-dong   

  1. Shenyang Dongda Sensor Technology Co., Ltd., Shenyang 110179, China
  • Received:2022-03-02 Online:2023-03-25 Published:2023-03-27

Abstract: The main revision contents of AMS2750F chapters compared with AMS2750E are introduced in this paper, and the revision of the technical requirements in chapter 3 is mainly analyzed, including temperature sensor, instrument, heat treatment furnace, system accuracy check, temperature uniformity test and so on. In addition, the development and application of temperature sensors conforming to the standard are described in detail, including the development and selection of high-precision thermocouple wire and compensation wire, the study of life and strength of TUS sensor, the development of SAT supporting device and temperature sensors for vacuum furnace.

Key words: temperature sensor, AMS2750F, thermocouple

CLC Number: 

  • TH811
[1] 王魁汉, 常方圆. 高端温度传感器的开发与应用[J]. 工业炉, 2020, 42(6): 1-4.
[2] SAE INTERNATIONAL.Aerospace material specification: AMS2750D[S]. Warrendale: [s.n.], 2005.
[3] SAE INTERNATIONAL.Aerospace material specification: AMS2750E[S]. Warrendale: [s.n.], 2012.
[4] SAE INTERNATIONAL.Aerospace material specification: AMS2750F[S]. Warrendale: [s.n.], 2020.
[5] BASSETT A.AMS2750F: the latest version of high temperature measurement requirements.[J]. Industrial Heating, 2021, 6: 22-28.
[6] ASTM INTERNATIONAL.Standard specification and temperature-electromotive force(emf) tables for standardized thermocouples: ASTM E230[S]. PA: ASTM Committee, 2003.
[7] 李琨, 张乐乐, 童斌斌, 等. AMS2750F系统精度测试关键点解读[J]. 工业加热, 2021, 50(5): 12-15.
[8] BASSETT A, YEAGER E.Thermocouple accuracy and adherence to key standards.[J]. Industrial Heating, 2021, 10: 37-48.
[9] 江智轩, 匡翠华. 热处理炉系统精度测试不合格问题分析与研究[J]. 金属加工(热加工), 2022(3): 81-83.
[10] 万明. 基于AMS2750E标准热处理工业炉仪表系统设计[J]. 工业炉, 2018, 40(6): 37-40.
[11] 张红梅. AMS2750E标准在真空炉中的应用[J]. 电子工业专用设备, 2014, 43(5): 47-51.
[12] 高伟, 徐维斌, 张在津, 等. 基于AMS2750E《高温测量》解决航空热加工设备系统精度超差的方法探讨[J]. 计量与测试技术, 2019, 46(9): 66-69.
[13] 马青松. 浅析NADCAP认证中热电偶的技术要求[J]. 计测技术, 2016, 36(4): 55-58.
[14] 柴俊彬, 王军, 张荣. 热处理炉工艺温度仪表系统的校准与调整[J]. 金属加工(热加工), 2017(19): 20-23.
[15] 常英明, 王斌, 赵敏杰. 关于符合AMS2750标准在TUS测试时过温的研究[J]. 电子工业专用设备, 2016, 45(4): 46-50.
[16] 杨新圆, 吕国义, 陈炜, 等. 现行热处理炉测试技术标准的比较分析[J]. 计测技术, 2017, 37(5): 34-39.
[17] 王魁汉. 在线原位校准—测温系统校准的新理念[J]. 计量学报, 2012, 33(6): 61-65.
[18] 夏春明, 王魁汉, 董健. 一种可在线更换的多参数温度传感器装置: CN210036996U[P].2020-02-07.
[19] 王魁汉, 黄明旭. 真空炉专用热电偶及其选择[J]. 真空, 2014, 51(6): 43-48.
[20] 苏剑, 柴俊彬, 刘戎. AMS2750E《高温测量》系统精度测试修正值使用方法讨论[J]. 计测技术, 2015, 35(增刊1): 46-47.
[21] 佟小军. 航空热处理主要特点与航空热处理炉选型技术要求: 下[J]. 金属加工(热加工), 2014(3): 24-27.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[4] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[5] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .
[6] XU Fa-jian, WANG Hai-lei, ZHAO Cai-xia, HUANG Zhi-ting. Application of chemical gases vacuum-compression recovery system in environmental engineering[J]. VACUUM, 2018, 55(5): 29 -33 .
[7] XIE Yuan-hua, HAN Jin, ZHANG Zhi-jun, XU Cheng-hai. Discussion on present situation and development trend of vacuum conveying[J]. VACUUM, 2018, 55(5): 34 -37 .
[8] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[9] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[10] CHANG Zhen-dong, MU Ren-de, HE Li-min, HUANG Guang-hong, LI Jian-ping. Reflectance spectroscopy study on TBCs prepared by EB-PVD[J]. VACUUM, 2018, 55(5): 46 -50 .