欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2023, Vol. 60 ›› Issue (6): 37-41.doi: 10.13385/j.cnki.vacuum.2023.06.06

• Thin Film • Previous Articles     Next Articles

Review on Interference Filters for Raman Detection Instruments

LIU Bo-wen, GAO Peng, WANG Rui-sheng, ZHAO Shuai-feng, REN Shao-peng, DONG Ming, CHEN Yi-fan, QIN Rui   

  1. Shenyang Instrument Science Research Institute Co., Ltd., Shenyang 110043, China
  • Received:2023-04-15 Online:2023-11-25 Published:2023-11-27

Abstract: This paper introduces the application scenarios and functions of interference filters in Raman detection instruments(abbreviated as Raman filters), and analyzes the influence of its spectral indicators on the performance and accuracy of Raman detection instruments, including spectral transmittance, spectral reflectance, background, steepness, etc. In order to meet the precise spectral test requirements of Raman filter performance indicators, the spectrophotometer detection and the setting method of related detection parameters are recommended. In addition, the method and advantages of using sputtering coating technology to manufacture high-performance Raman filters are introduced. Finally, the development of Raman filters is summarized and prospected, so as to provide references for Raman filters in scientific research and industrial applications.

Key words: Raman detection instrument, Raman filter, optical index, spectrophotometer, sputtering coating

CLC Number:  O432

[1] RAMAN C V, KRISHNAN K S.A new type of secondary radiation[J]. Nature, 1928, 121(3048): 501-502.
[2] MAIMAN T H.Stimulated optical radiation in ruby[J]. Nature, 1960, 187(4763): 493-494.
[3] PUPPELS G J, HUIZINGA A, KRABBE H W, et al.A high-throughput Raman notch filter set[J]. Review of Scientific Instruments, 1990, 61(12): 3709-3712.
[4] KRISHNA R, COLAK I.Advances in biomedical applications of Raman microscopy and data processing: a mini review[J]. Analytical Letters, 2023,56(4):576-617.
[5] ZHENG J, HE L.Surface-enhanced Raman spectroscopy for the chemical analysis of food[J]. Comprehensive Reviews in Food Science and Food Safety, 2014, 13(3): 317-328.
[6] SIVAPRAKASAM V, HART M B.Surface-enhanced Raman spectroscopy for environmental monitoring of aerosols[J]. ACS Omega, 2021, 6(15): 10150-10159.
[7] HUANG T Y, YU J C C. Development of crime scene intelligence using a hand-held Raman spectrometer and transfer learning[J]. Analytical Chemistry, 2021, 93(25): 8889-8896.
[8] ZIEMANN M A, MADARIAGA J M.Applications of Raman spectroscopy in art and archaeology[J]. Journal of Raman Spectroscopy, 2021, 52(1): 8-14.
[9] HAN X X, RODRIGUEZ R S, HAYNES C L, et al.Surface-enhanced Raman spectroscopy[J]. Nature Reviews Methods Primers, 2021, 1: 87.
[10] BUHRKE D, HILDEBRANDT P.Probing structure and reaction dynamics of proteins using time-resolved resonance Raman spectroscopy[J]. Chemical Reviews, 2020, 120(7): 3577-3630.
[11] TAYLOR E A, DONNELLY E.Raman and Fourier transform infrared imaging for characterization of bone material properties[J]. Bone, 2020, 139: 115490.
[12] MOSCA S, CONTI C, STONE N, et al.Spatially offset Raman spectroscopy[J]. Nature Reviews Methods Primers, 2021, 1: 21.
[13] 杨浩. 便携式拉曼光谱仪若干关键技术的研究[D]. 苏州: 苏州大学, 2014.
[14] 张一超. 手持式拉曼光谱检测装置光学系统的设计与实现[D]. 杭州: 浙江工业大学, 2019.
[15] 唐晋发, 顾培夫, 刘旭, 等. 现代光学薄膜技术[M]. 杭州: 浙江大学出版社, 2006.
[16] 杨洁, 杨照清, 方晨霆, 等. 低波数高分辨率宽光谱拉曼光谱仪的集成化设计[J]. 光学技术, 2021, 47(6): 647-653.
[17] 吕鑫. 宽波段单细胞拉曼光谱仪光学系统设计及杂散光处理方法[D]. 长春: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2022.
[18] 孙斌. 分光光度计主要技术指标及其检测方法[J]. 分析仪器, 2007(1): 53-56.
[19] Agilent 公司官网[EB/OL].[2023-02-05].https://www.agilent.com.
[20] Semrock 公司官网[EB/OL].[2023-02-05].https://www.semrock.com.
[21] Alluxa 公司官网[EB/OL].[2023-02-05].https://www.alluxa.com.
[22] 王晓明, 鄂东梅, 武俊生, 等. 基于等离子体在磁控溅射增强的模拟[J]. 真空, 2020, 57(3): 5-10.
[23] 朱蓓蓓, 倪昌, 秦琳, 等. 基于磁控溅射的纳米金属薄膜沉积工艺研究[J]. 真空, 2021, 58(6): 21-26.
[24] 刘沅东. 磁控溅射制备大面积ZnO薄膜性能的研究[J]. 真空, 2022, 59(1): 29-32.
[1] REN Shao-peng, GAO Peng, WANG Rui-sheng, JIN Xiu, WANG Zhong-lian, ZHANG Yi. Introduction for the Standard of Interference Filters Used for Fluorescence Detection Analysis [J]. VACUUM, 2021, 58(4): 25-29.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[4] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[5] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .
[6] XU Fa-jian, WANG Hai-lei, ZHAO Cai-xia, HUANG Zhi-ting. Application of chemical gases vacuum-compression recovery system in environmental engineering[J]. VACUUM, 2018, 55(5): 29 -33 .
[7] XIE Yuan-hua, HAN Jin, ZHANG Zhi-jun, XU Cheng-hai. Discussion on present situation and development trend of vacuum conveying[J]. VACUUM, 2018, 55(5): 34 -37 .
[8] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[9] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[10] CHANG Zhen-dong, MU Ren-de, HE Li-min, HUANG Guang-hong, LI Jian-ping. Reflectance spectroscopy study on TBCs prepared by EB-PVD[J]. VACUUM, 2018, 55(5): 46 -50 .