VACUUM ›› 2023, Vol. 60 ›› Issue (6): 37-41.doi: 10.13385/j.cnki.vacuum.2023.06.06
• Thin Film • Previous Articles Next Articles
LIU Bo-wen, GAO Peng, WANG Rui-sheng, ZHAO Shuai-feng, REN Shao-peng, DONG Ming, CHEN Yi-fan, QIN Rui
CLC Number: O432
[1] RAMAN C V, KRISHNAN K S.A new type of secondary radiation[J]. Nature, 1928, 121(3048): 501-502. [2] MAIMAN T H.Stimulated optical radiation in ruby[J]. Nature, 1960, 187(4763): 493-494. [3] PUPPELS G J, HUIZINGA A, KRABBE H W, et al.A high-throughput Raman notch filter set[J]. Review of Scientific Instruments, 1990, 61(12): 3709-3712. [4] KRISHNA R, COLAK I.Advances in biomedical applications of Raman microscopy and data processing: a mini review[J]. Analytical Letters, 2023,56(4):576-617. [5] ZHENG J, HE L.Surface-enhanced Raman spectroscopy for the chemical analysis of food[J]. Comprehensive Reviews in Food Science and Food Safety, 2014, 13(3): 317-328. [6] SIVAPRAKASAM V, HART M B.Surface-enhanced Raman spectroscopy for environmental monitoring of aerosols[J]. ACS Omega, 2021, 6(15): 10150-10159. [7] HUANG T Y, YU J C C. Development of crime scene intelligence using a hand-held Raman spectrometer and transfer learning[J]. Analytical Chemistry, 2021, 93(25): 8889-8896. [8] ZIEMANN M A, MADARIAGA J M.Applications of Raman spectroscopy in art and archaeology[J]. Journal of Raman Spectroscopy, 2021, 52(1): 8-14. [9] HAN X X, RODRIGUEZ R S, HAYNES C L, et al.Surface-enhanced Raman spectroscopy[J]. Nature Reviews Methods Primers, 2021, 1: 87. [10] BUHRKE D, HILDEBRANDT P.Probing structure and reaction dynamics of proteins using time-resolved resonance Raman spectroscopy[J]. Chemical Reviews, 2020, 120(7): 3577-3630. [11] TAYLOR E A, DONNELLY E.Raman and Fourier transform infrared imaging for characterization of bone material properties[J]. Bone, 2020, 139: 115490. [12] MOSCA S, CONTI C, STONE N, et al.Spatially offset Raman spectroscopy[J]. Nature Reviews Methods Primers, 2021, 1: 21. [13] 杨浩. 便携式拉曼光谱仪若干关键技术的研究[D]. 苏州: 苏州大学, 2014. [14] 张一超. 手持式拉曼光谱检测装置光学系统的设计与实现[D]. 杭州: 浙江工业大学, 2019. [15] 唐晋发, 顾培夫, 刘旭, 等. 现代光学薄膜技术[M]. 杭州: 浙江大学出版社, 2006. [16] 杨洁, 杨照清, 方晨霆, 等. 低波数高分辨率宽光谱拉曼光谱仪的集成化设计[J]. 光学技术, 2021, 47(6): 647-653. [17] 吕鑫. 宽波段单细胞拉曼光谱仪光学系统设计及杂散光处理方法[D]. 长春: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2022. [18] 孙斌. 分光光度计主要技术指标及其检测方法[J]. 分析仪器, 2007(1): 53-56. [19] Agilent 公司官网[EB/OL].[2023-02-05].https://www.agilent.com. [20] Semrock 公司官网[EB/OL].[2023-02-05].https://www.semrock.com. [21] Alluxa 公司官网[EB/OL].[2023-02-05].https://www.alluxa.com. [22] 王晓明, 鄂东梅, 武俊生, 等. 基于等离子体在磁控溅射增强的模拟[J]. 真空, 2020, 57(3): 5-10. [23] 朱蓓蓓, 倪昌, 秦琳, 等. 基于磁控溅射的纳米金属薄膜沉积工艺研究[J]. 真空, 2021, 58(6): 21-26. [24] 刘沅东. 磁控溅射制备大面积ZnO薄膜性能的研究[J]. 真空, 2022, 59(1): 29-32. |
[1] | REN Shao-peng, GAO Peng, WANG Rui-sheng, JIN Xiu, WANG Zhong-lian, ZHANG Yi. Introduction for the Standard of Interference Filters Used for Fluorescence Detection Analysis [J]. VACUUM, 2021, 58(4): 25-29. |
|