欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2023, Vol. 60 ›› Issue (6): 61-65.doi: 10.13385/j.cnki.vacuum.2023.06.10

• Vacuum Metallurgy and Thermal Engineering • Previous Articles     Next Articles

Current Status and Prospects of Liquid Metal Cooling Directional Solidification/Single Crystal Furnace

SONG Jing-si1, TAN Yong-ning2, CHEN Jiu-qiang1, ZHANG Zhe-kui1, SUN Zu-lai1   

  1. 1. Shenyang Vacuum Technology Institute Co., Ltd., Shenyang 110042, China;
    2. AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
  • Received:2023-08-08 Online:2023-11-25 Published:2023-11-27

Abstract: Firstly, the mainstream forms, technical characteristics, and current usage status of liquid metal cooling directional solidification/single crystal furnaces are introduced. Then the applications of Sn and Al as medium to LMC furnace are compared. Finally, the development prospects of Sn cooling and Al cooling directional solidification equipment are analyzed.

Key words: LMC, directional solidification, single crystal, precision casting

CLC Number:  TF341.7

[1] GIAMEI A F, TSCHINKEL J G.Liquid metal cooling: a new solidification technique[J]. Metallurgical Transactions A, 1976,7(9): 1427-1434.
[2] 徐瑞. 合金定向凝固[M]. 北京:冶金工业出版社, 2009.
[3] ERICKSON J S, OWCZARSKI W A, CURRAN P M.Advances in fabricating aerospace structures process speeds up directional solidification[J]. Metal Progress, 1971,99(3): 58-60.
[4] 胡汉起. 金属凝固原理[M]. 北京:机械工业出版社, 2000.
[5] REED R C.The superalloys: fundamentals and applications[M]. Cambridge: Cambridge University Press, 2006.
[6] 葛丙明, 刘林, 黄太文, 等. 液态金属冷却法在高温合金定向凝固中的应用[J]. 铸造, 2009,58(9): 910-917.
[7] 宋静思, 赵帅, 晋伟达, 等. 真空定向凝固炉的发展与展望[J]. 真空, 2017,54(6): 66-73.
[8] 刘金洪, 刘林, 黄太文, 等. 液态金属冷却定向凝固设备的研制[J]. 铸造, 2010,59(8): 822-825.
[9] 姚仲恩. 液态金属冷却定向结晶炉研制[J]. 上海钢研, 1987(2): 47-50.
[10] КАБЛОВ Е Н, ЕЧИН А Б, БОНДАРЕНКО Ю А. История развития технологии направленной кристаллизации и оборудования для литья лопаток газотурбинных двигателей [J]. Жаропрочные Сплавы и Стали, 2020,87(3):3-12.
[11] ВИАМ. Производство автоматизированных комплексов для получения литых деталей гтд сложной конфигурации с направленной и монокристаллической структурами[EB/OL]. [2023-07-28]. https://viam.ru/uvnc.
[12] 沙林 P E,卡布洛夫 E H,格拉西莫夫 B B, 等. УВНК-8П半连续式真空定向结晶装置[J]. 材料工程, 1992(2): 4-5.
[13] 航空航天工业部六二一研究所. 苏联镍基铸造高温合金[M]. 北京:冶金工业出版社, 1992.
[14] 马德新. 高温合金叶片单晶凝固技术的新发展[J]. 金属学报, 2015,51(10): 1179-1190.
[15] LOHMILLER A, EBER W, GROBMANN J, et al. Improved quality and economics of investment castings by liquid metal cooling: the selection of cooling media[C]//Superalloys 2000. Warrendale, PA: TMS, 2000: 181-188.
[16] ELLIOTT A, POLLOCK T, TIN S, et al. Directional solidification of large superalloy castings with radiation and liquid-metal cooling a comparative assessment[J]. Metallurgical and Materials Transactions A, 2004,35: 3221-3231.
[17] БОНДАРЕНКО Ю А, КАБЛОВ E H, ДЕМОНИС H M. Высокоградиентная направленная кристаллизация лопаток ГТД с монокристаллической структурой[J]. Газотурбинные Технологии, 2007(3):47-55.
[18] 王天剑, 杨功显, 李林蓄, 等. 液态金属冷却法制备工业燃气轮机涡轮叶片的研究进展[J]. 东方汽轮机, 2010(3): 46-51.
[19] 卡布洛夫E H, 格拉西莫夫B B, 杜布罗夫斯基B A, 等. 定向结晶时高温合金组织控制的工艺前景[J]. 材料工程, 1996(5): 16-20.
[20] ELLIOTT A J. Directional solidification of large cross- section nickel-base superalloy castings via liquid-metal cooling[D]. Ann Arbor, MI: University of Michigan, 2005.
[21] 马敦栋. DZ17合金185毫米液态金属冷却法定向结晶叶片通过鉴定[J]. 上海钢研, 1985(6): 37.
[22] SAE International. Trace element control nickel alloy castings: SAE AMS 2280D:2019[S/OL]. https://www.sae.org/standards/content/ams2280d/.
[23] СТРОГАНОВ Г Б, ЛОГУНОВ А В, ГЕРАСИМОВ В В, et al. Высокоскоростная направленная кристаллизация жаропрочных сплавов[J]. Сварочное Производство, 1983(12):75-82.
[24] КАБЛОВ Е Н, ГЕРАСИМОВ В В, ВИСИК Е М. Управление структурой жаропрочных сплавов при изготовлении лопаток ГТД направленной кристаллизацией [J]. Авиационная Промышленность, 1999(2):91-109.
[25] ДЕМОНИС И М, ПЕТРОВА А П. Виам-основопо ложник отечественного материаловедения[J]. Все Материалы Энциклопедический Справочник, 2012(5):75-84.
[26] 彭友梅. 苏联/俄罗斯/乌克兰航空发动机的发展[M]. 北京:航空工业出版社, 2015.
[1] SONG Jing-si, WANG Chun-gang, HUANG Han-chuan, ZUO Ye, TENG Long, CHEN Jiu-qiang, LI Xiu-zhang. The Mainstream Structure and Future Development of Vacuum Induction Precision Casting Furnace for Equiaxed Crystal Casting [J]. VACUUM, 2023, 60(5): 92-97.
[2] LIU Xiao-gong, JIANG Nan, HAO Qi-zan, LUO Liang, SHI Zhen-xue, LUO Yu-shi. Experimental Research on Casting Dimension Effect of Single Crystal Superalloy [J]. VACUUM, 2022, 59(3): 80-85.
[3] SONG Jing-si, YU Shi-ya, CHEN Jiu-qiang, DU Teng-fei, TENG Long, LI Xiu-zhang, WANG Jie, ZHANG Zhe-kui. A New Type of Vacuum Equiaxed Crystal Precision Casting Furnace [J]. VACUUM, 2022, 59(1): 74-78.
[4] SONG Jing-si, WANG Ting, LI Xiu-zhang, CHEN Jiu-qiang, ZHANG Zhe-kui. Study on the Structure Layout of a Large Vacuum Precision Casting Furnace [J]. VACUUM, 2021, 58(2): 31-36.
[5] WANG Kai, XU Zhen-hua, ZHEN Zhen, DAI Jian-wei, WANG Xin, HE Li-min. Effect of Grit Blasting on the Recrystallization, Elemental Diffusion Behaviors of Single Crystal Superalloy [J]. VACUUM, 2020, 57(3): 25-29.
[6] SONG Jing-si, ZHAO Shuai, WANG Ting, CHEN Jiu-qiang, ZHANG Zhe-kui. Fine Grain Precision Casting Furnace [J]. VACUUM, 2019, 56(4): 44-48.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[4] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[5] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .
[6] XU Fa-jian, WANG Hai-lei, ZHAO Cai-xia, HUANG Zhi-ting. Application of chemical gases vacuum-compression recovery system in environmental engineering[J]. VACUUM, 2018, 55(5): 29 -33 .
[7] XIE Yuan-hua, HAN Jin, ZHANG Zhi-jun, XU Cheng-hai. Discussion on present situation and development trend of vacuum conveying[J]. VACUUM, 2018, 55(5): 34 -37 .
[8] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[9] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[10] CHANG Zhen-dong, MU Ren-de, HE Li-min, HUANG Guang-hong, LI Jian-ping. Reflectance spectroscopy study on TBCs prepared by EB-PVD[J]. VACUUM, 2018, 55(5): 46 -50 .