欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2024, Vol. 61 ›› Issue (3): 20-25.doi: 10.13385/j.cnki.vacuum.2024.03.04

• Vacuum Acquisition System • Previous Articles     Next Articles

Measurement and Analysis of Pumping Speed of G-M Refrigerator Cryopump Based on the Orifice Method

YU Yan-fei, LI Xiao-gang, HU Xiang-e, CHEN Jin-wen, CHEN Jie-xin   

  1. Zhongshan Kaixuan Vacuum Science & Technology Co., Ltd., Zhongshan 528478, China
  • Received:2023-06-25 Published:2024-06-04

Abstract: Pumping speed is an important index to measure the pumping performance of cryopump. The throughput method is generally used to measure the pumping speed of cryopump in China. In addition, the orifice method is also an important method for measuring the cryopump pumping speed. In this paper, detailed introduction of pumping speed test for different gases of ZD-200 caliber cryopump was conducted based on the orifice method specified in the current standards. The results show that the pumping speed of cryopump for N2 and Ar are 2 410 L/s and 1 884 L/s respectively, which are significantly better than the indicators of similar products at home and abroad. The pumping speed of cryopump for H2 is 2 577 L/s, which is at the same level as the technical indicators of domestic and foreign products. The test results obtained by the orifice method have high accuracy and credibility.

Key words: G-M refrigerator cryopump, the orifice method, pumping speed measure, performance analysis

CLC Number:  TB752+.53

[1] 曾环, 邓家良, 孙志和. 250 mm口径低温泵设计[J]. 真空, 2020, 57(2): 13-16.
[2] PARK J, KO J, KIM H, et al.Development of a large capacity cryopump equipped with a two-stage GM cryocooler[J]. Applied Thermal Engineering,2022(217):119217.
[3] VERMA R, NAGENDRA H N, KUMAR V B M, et al. Performance improvement of cryosorption pump by enhancing thermal conductivity of epoxy-aluminum composite[J].Composites Part B:Engineering,2019(176):107163.
[4] 蔡阿宁. 低温泵系统的故障分析与排除[J].真空与低温, 2016, 22(4): 233-236.
[5] 高香院. 现代低温泵[M]. 西安:西安交通大学出版社, 1990.
[6] GANGRADEY R, MISHRA J, MUKHERJEE S, et al.Experimental investigation of thermal properties of materials used to develop cryopump[J].Fusion Science and Technology, 2021, 77: 333-339.
[7] BARNASIYA R, PANDEY K D.Design of cryopannel and study of pumping behaviour of different gases[J]. Journal of Emerging Technologies and Innovative Research, 2020, 7(3): 22-27.
[8] 张文毓. 低温泵的研究与应用[J].上海电气技术,2016, 9(1): 26-29.
[9] 冯欣宇, 杨杨.集成电路制造用制冷机低温泵发展现状[J]. 真空, 2022, 59(2): 42-47.
[10] 郝熙欢. 10K温区双级G-M制冷机结构优化及实验研究[D]. 上海:上海交通大学, 2012.
[11] ISO1608-1:1993(E) Vapour vacuum pumps-measurement of performance characteristics[S].
[12] 苟舜华. 制冷机低温泵抽速测试方法探讨[J]. 真空, 1993(1): 42-49.
[13] ISO 21360-1:2020 Vacuum technology-standard methods for measuring vacuum-pump performance part 1:general description[S].
[14] SJ/T 11259-2001 制冷机低温泵总规范[S].
[15] JB/T 11081-2011 真空技术制冷机低温泵[S].
[16] GB/T 40344.1-2021 真空技术真空泵性能测量标准方法第1部分,总体要求[S].
[17] 王少恒, 刘娜, 武义锋, 等. 新型低温泵测试平台的研制[C]//安徽省真空学会. 安徽省第三届(2014年)“万瑞杯”真空科技青年创新大赛暨学术研讨会论文集. 2014: 10-20.
[18] 曾环, 杨杨, 武义锋, 等. G-M制冷机低温泵减振设计和抽氢性能研究[J]. 低温与超导, 2023, 51(5): 78-84.
[19] 徐中堂, 武义峰. 基于定压法的低温泵性能测试与分析[C]//中国真空学会. 中国真空学会2012学术年会论文摘要集. 2012: 93.
[20] 达道安. 真空设计手册(修订版)[M]. 北京:国防工业出版社, 1991.
[21] 卢少波, 王承章, 张吉峰. 低温泵在超高真空炉中的应用实例[J]. 真空科学与技术学报, 2017, 37(2): 141-145
[22] 江涛, 曹建勇, 雷光玖, 等. 低温泵用椰基活性炭材料的选择和比较[J]. 核聚变与等离子体物理, 2018, 38(2): 211-215.
[1] XU Hui-qiang, ZONG Cheng, WANG Yanqing, XU Heng, CHEN Yu-xiang. Calculation Method and Analysis on Thermal Compressor Ejection Characteristics [J]. VACUUM, 2021, 58(2): 52-57.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[4] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[5] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .
[6] XU Fa-jian, WANG Hai-lei, ZHAO Cai-xia, HUANG Zhi-ting. Application of chemical gases vacuum-compression recovery system in environmental engineering[J]. VACUUM, 2018, 55(5): 29 -33 .
[7] XIE Yuan-hua, HAN Jin, ZHANG Zhi-jun, XU Cheng-hai. Discussion on present situation and development trend of vacuum conveying[J]. VACUUM, 2018, 55(5): 34 -37 .
[8] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[9] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[10] CHANG Zhen-dong, MU Ren-de, HE Li-min, HUANG Guang-hong, LI Jian-ping. Reflectance spectroscopy study on TBCs prepared by EB-PVD[J]. VACUUM, 2018, 55(5): 46 -50 .