欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2024, Vol. 61 ›› Issue (3): 84-89.doi: 10.13385/j.cnki.vacuum.2024.03.15

• Vacuum Metallurgy and Thermal Engineering • Previous Articles     Next Articles

Experimental Study on Seismic Resistance of Crucible Cooling Device for Vacuum Electron Beam Melting Furnace

CHENG Cheng, JIA Zi-zhao, LI Ju, YAN Chao   

  1. Institute of Physical and Chemical Engineering of Nuclear Industry, Tianjin 300180, China
  • Received:2022-07-28 Published:2024-06-04

Abstract: A crucible cooling device used to safely cool the crucible in the vacuum electron beam melting furnace was independently developed by the institute of physical and chemical engineering of nuclear industry. In this paper, the seismic identification test of the crucible cooling device was carried out. The resonance frequency of the crucible cooling device before and after the seismic test was measured, and five operation benchmark seismic tests and one safe shutdown seismic test were carried out by seismic station. The test results show that the crucible cooling device has sufficient seismic strength, and can operate normally under the specified seismic conditions to meet the seismic performance requirements.

Key words: crucible cooling device, resonance frequency, seismic test, seismic station, seismic performance

CLC Number:  TK264.1;TB123

[1] 谭毅, 石爽. 电子束技术在冶金精炼邻域中的研究现状和发展趋势[J]. 材料工程, 2013(8): 92-100.
[2] VUTOVA K, VASSILEVA V.Electron-beam melting and reuse of metallic materials[J]. Metal Science and Heat Treatment, 2020, 62(5/6): 345-348.
[3] 贾国斌, 尹中荣. 电子束技术在难熔金属行业的应用[J]. 稀有金属材料与工程, 2012, 41(S2): 113-117.
[4] 张延宾, 孙照富, 尹中荣. 大型太阳能级多晶硅提纯用真空电子束熔炼炉的研制[J]. 真空, 2014, 51(4): 22-25.
[5] CHAO G, GE W, FENG L.Dual-material electron beam selective melting: hardware development and validation studies[J]. Engineering, 2015, 1(1): 124-130.
[6] ZHAO Y F, KOIZUMI Y, AOYAGI K, et al.Thermal properties of powder beds in energy absorption and heat transfer during additive manufacturing with electron beam[J]. Powder Technology, 2020, 381: 44-54.
[7] KATIA V, VLADISLAVA S, VANIA V, et al.Behaviour of impurities during electron beam melting of copper technogenic material[J]. Materials, 2022, 15(3): 936.
[8] JIN J, GAO R, PENG H.Rapid solidification microstructure and carbide precipitation behavior in electron beam melted high-speed steel[J]. Metallurgical and Materials Transactions A, 2020, 51(5): 2411-2429.
[9] SUN J L, ZHANG J, WANG H W, et al.Purification of metallurgical grade silicon in an electron beam melting furnace[J]. Surface & Coatings Technology, 2013, 228: 567-571.
[10] ASGHAR H M, SHIFA M S, GILANI Z A, et al.Mechanism of the effect of electron beam melting on the distribution of oxygen, nitrogen and carbon in silicon[J]. International Journal of Materials Research, 2019, 110(5): 110.
[11] 张志平, 许忠政, 张黎源, 等. 专用电子束熔炼炉真空抽气系统设计[J]. 真空, 2021, 58(5): 42-45.
[12] 张志平, 张帆, 张黎源, 等. 专用电子束熔炼炉的研制[J]. 天津冶金, 2015(5): 59-62.
[13] 张志平. 电子束熔炼炉连铸系统设计[J]. 真空, 2019, 56(4): 40-43.
[14] 成成, 王洪强, 李阳, 等. 基于S7-1200和WinCC的坩埚冷却水循环监控系统[J]. 真空, 2021, 58(5): 85-88.
[15] 刘欢, 张帆, 罗立平.电子束熔炼用水冷铜坩埚水道数值模拟[C]//中国核科学技术进展报告(第五卷)—中国核学会2017年学术年会论文集第4册(同位表分离分卷. 2017:254-261.
[16] 成成, 张帆, 李菊, 等. 真空电子束熔炼用坩埚冷却装置框架的抗震分析[J]. 真空, 2021, 58(6): 67-71.
[17] IEEE. IEEE Recommended practice for seismic qualification of class 1E equipment for nuclear power generating stations:IEEE Std 344™-2004[S]. New York: The Institute of Electrical and Electronic Engineers, Inc., 2004.
[18] 方庆贤. 核电厂设备抗震鉴定的审评[J]. 核动力工程, 1995, (5): 394-400.
[19] 邱法维, 钱稼茹, 陈志鹏. 结构抗震实验方法[M]. 北京: 科学出版社, 2000: 80-82.
[20] 刘永昌, 孙白涛. 核电站用机电设备抗震性能试验鉴定若干问题[J]. 地震工程与工程振动, 1999, (3): 68-73.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[4] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[5] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .
[6] XU Fa-jian, WANG Hai-lei, ZHAO Cai-xia, HUANG Zhi-ting. Application of chemical gases vacuum-compression recovery system in environmental engineering[J]. VACUUM, 2018, 55(5): 29 -33 .
[7] XIE Yuan-hua, HAN Jin, ZHANG Zhi-jun, XU Cheng-hai. Discussion on present situation and development trend of vacuum conveying[J]. VACUUM, 2018, 55(5): 34 -37 .
[8] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[9] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[10] CHANG Zhen-dong, MU Ren-de, HE Li-min, HUANG Guang-hong, LI Jian-ping. Reflectance spectroscopy study on TBCs prepared by EB-PVD[J]. VACUUM, 2018, 55(5): 46 -50 .