欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2024, Vol. 61 ›› Issue (5): 90-96.doi: 10.13385/j.cnki.vacuum.2024.05.12

Previous Articles     Next Articles

Study on Thermal Micro-Displacement of Ion Thruster C-C Composite Grid under Multiple Conditions

GAO Bin, LI Juan, CHEN Juan-juan, LI Ru-yue, WANG Yan-long   

  1. Science and Technology on Vacuum Technology and Physics Laboratory, Lanzhou Institute of Physics, Lanzhou 730000, China
  • Received:2023-12-27 Online:2024-09-25 Published:2024-10-10

Abstract: Aiming at the design of C-C integrated composite grid module of LIPS-100 ion thruster, the thermodynamic characteristics of the grid were studied by using the thermal characteristics calculation model. Using Workbench transient thermal analysis method, the thermal performance parameters of two kinds of C-C gates with different curved surface orientation were analyzed, and compared with the traditional metal molybdenum gate. The results show that under the conditions of equal working conditions, equal spherical configuration and equal gate spacing, the weight of C-C composite gate is reduced by 35.7%, the upper limit of thermal analysis temperature is reduced by 19.6%, and the heating rate is reduced by 21.3%. Compared with molybdenum grid, the displacement of C-C composite screen grid is reduced by 0.151 mm, and the displacement of acceleration gate is reduced by 0.123 mm. The C-C composite screen grid has higher thermal shock resistance and can effectively alleviate the problem of gate spacing fluctuation in the early stage of thruster operation. Under the same composite gate material, when the spherical orientation structure is different, the grid center-edge thermal micro-displacement is different, the acceleration gate micro-displacement of convex gate is reduced by 0.025-0.038 mm compared to that of the concave gate, which can effectively improve the wear life of the acceleration gate zone. For small size ion thruster, convex grid has obvious advantages in thermal shock resistance.

Key words: ion thruster, grid module, C-C composite material, thermal deformation displacement

CLC Number:  V439.4

[1] 于达仁, 乔磊, 蒋文嘉, 等. 中国电推进技术发展及展望[J]. 推进技术, 2020, 41(1): 1-11.
[2] 魏贺冉, 闫联生, 孙建涛. 离子推力器栅极材料的发展现状[J]. 材料导报, 2022, 36(22): 70-75.
[3] EMHOFF J W, BOYD I D.Modeling of total thruster performance for NASA's evolutionary xenon thruster ion optics[J]. Journal of Propulsion and Power,2006,22(4):741-748.
[4] POLK J, CHAPLIN V, ANDERSON J, et al.Modeling grid erosion in the NEXT ion thruster using the CEX2D and CEX3D codes[J]. Journal of Electric Propulsion, 2023, 2:14.
[5] CHAPLIN V H, GOEBEL D M, LEWIS R A, et al.Accelerator grid life modeling of T6 ion thruster for BepiColombo[J]. Journal of Propulsion and Power, 2021, 37(3): 436-449.
[6] KITAMURA S, MIYAZAKI K, HAYAKAWA Y, et al.Performance improvement of 150 mN xenon ion thrusters[J]. Acta Astronautica, 2003, 52(1): 11-20.
[7] HE Z H, MIAO L, ZHU Z X, et al.Analysis of sputtering yield measurements for ion thruster grid materials[J]. AIAA Journal, 2023, 61(7): 2799-2809.
[8] YAMASHITA Y, TSUKIZAKI R, DAIKI K, et al.Plasma hysteresis caused by high-voltage breakdown in gridded microwave discharge ion thruster μ10[J]. Acta Astronautica, 2021, 185: 179-187.
[9] 郭德洲, 胡竟, 杨福全, 等. 曲面栅极朝向对离子推力器影响的试验研究[J]. 真空与低温, 2022, 28(1): 115-121.
[10] 孙明明, 张天平, 王亮, 等. 30 cm离子推力器栅极组件热应力及热形变计算模拟[J]. 推进技术, 2016, 37(7): 1393-1400.
[11] 郭德洲,顾左,孔令轩. 离子推力器栅极力学性能模拟分析研究[J]. 真空科学与技术学报,2016,36(8):891-897.
[12] 李建鹏, 赵以德, 靳伍银, 等. 多模式离子推力器放电室和栅极设计及其性能实验研究[J]. 物理学报,2022, 71(19): 247-257.
[13] 张雪儿, 张天平, 李得天, 等. 离子推力器栅极极限寿命优化[J]. 推进技术, 2022, 43(9): 442-450.
[14] 郭德洲, 顾左, 陈娟娟, 等. 离子推力器变孔径栅极方案数值研究[J]. 推进技术, 2018, 39(9): 2136-2143.
[15] HASSANI B,HINTON E.A review of homogenization and topology optimization I-homogenization theory for media with periodic structures[J]. Computers and Structures, 1999, 69(9): 707-717.
[16] ZHONG L W, LIU Y, LI J, et al.Numerical simulation of characteristics of CEX ions in ion thruster optical system[J]. Chinese Journal of Aeronautics, 2010, 23(1): 15-21.
[17] MECKEL N, POLAHA J, JUHLIN N.Structural analysis of pyrolytic graphite optics for the HiPEP ion thruster[C]//40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Fort Lauderdale, Florida: AIAA, 2004.
[18] LIANG X Q,YUAN J H, ZHOU S M.Finite element modeling and thermal deformation study of gate assembly of ion thruster[J]. Journal of Vacuum and Low Temperature, 2018, 24(4): 242-248.
[19] 鹿畅, 曹勇, 夏广庆. 离子推力器双阶栅极系统引出性能研究[J]. 推进技术, 2022, 43(3): 384-390.
[20] 史楷, 孙明明, 顾左, 等. 20 cm口径离子推力器力学特性模拟分析[J]. 强激光与粒子束, 2022, 34(4): 117-124.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[4] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[5] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .
[6] XU Fa-jian, WANG Hai-lei, ZHAO Cai-xia, HUANG Zhi-ting. Application of chemical gases vacuum-compression recovery system in environmental engineering[J]. VACUUM, 2018, 55(5): 29 -33 .
[7] XIE Yuan-hua, HAN Jin, ZHANG Zhi-jun, XU Cheng-hai. Discussion on present situation and development trend of vacuum conveying[J]. VACUUM, 2018, 55(5): 34 -37 .
[8] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[9] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[10] CHANG Zhen-dong, MU Ren-de, HE Li-min, HUANG Guang-hong, LI Jian-ping. Reflectance spectroscopy study on TBCs prepared by EB-PVD[J]. VACUUM, 2018, 55(5): 46 -50 .