欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2025, Vol. 62 ›› Issue (1): 72-77.doi: 10.13385/j.cnki.vacuum.2025.01.12

• Vacuum Metallurgy and Thermal Engineering • Previous Articles     Next Articles

Research on Melting Methods of Nickel-Based Superalloy

XU Ping   

  1. AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
  • Received:2024-02-01 Online:2025-01-25 Published:2025-02-10

Abstract: With the development of science and technology, nickel-based superalloys have been widely used in high-precision fields such as aerospace and nuclear power, and their performance needs to be continuously improved. As a key link in the preparation process of nickel-based superalloy, melting directly affects the overall quality and properties of alloy materials, so it is very important to choose the appropriate melting process. At present, the commonly used melting processes include vacuum induction melting (VIM) and vacuum consumable remelting (VAR), etc., which have their own advantages and disadvantages in practical applications, and need to be rationally selected and matched to accurately control the parameters, so as to meet the increasing melting demand of nickel-based superalloys. In this paper, the melting method of nickel-based superalloy is analyzed and studied in order to provide reference for related melting work.

Key words: nickel-based superalloy, melting method, duplex method, triple process

CLC Number:  TF644

[1] 王誉程, 连利仙, 邓钥丹, 等. 镍基单晶高温合金熔炼工艺优化[J]. 机械工程材料, 2023, 47(3): 42-47.
[2] 杨浩, 王方军, 李采, 等. 镍基高温合金的熔炼工艺研究进展[J]. 特殊钢, 2023, 44(3): 1-9.
[3] 马秀萍, 周同金, 刘东方, 等. 真空感应熔炼工艺对镍基高温合金氧氮含量的影响[J]. 铸造, 2019, 68(7):730-733.
[4] 李龙飞, 林腾昌, 梁强, 等. C-HRA-3镍基耐热合金真空感应熔炼脱氧脱氮热动力学研究[J]. 铸造技术,2022, 43(7): 559-566.
[5] 杨富仲, 张健, 张立峰, 等. 镍基高温合金真空自耗数值模拟[J]. 钢铁研究学报, 2022, 34(9): 916-924.
[6] 袁艺, 杨树峰, 刘威, 等. 镍基高温合金真空感应熔炼碳氧反应数值模拟[J]. 中国冶金, 2023, 33(2): 73-79.
[7] 李化坤, 马中钢, 逯红果, 等.镍基高温合金真空感应熔炼过程研究[J]. 山东冶金, 2020, 42(5): 33-34.
[8] 逯红果, 马中钢, 李化坤, 等. 铸造镍基高温合金重熔工艺的研究进展[J]. 热加工工艺, 2023, 52(13): 1-5.
[9] 王林珠, 李翔, 刘录凯, 等. 镍基高温合金中非金属夹杂物成分和特征控制[J]. 中国冶金, 2021, 31(5): 32-38.
[10] 王建武, 王宁, 杨树峰. 基于数值模拟的镍基高温合金电渣重熔工艺优化[J].中国冶金, 2022, 32(3): 80-86.
[11] 张峰, 游小刚, 谭毅, 等. 熔体过热处理对FGH4096镍基高温合金纯净化行为及凝固组织的影响[J]. 机械工程材料, 2022, 46(11): 9-19.
[12] SUGIYAMA T, UTADA S, YOKOKAWA T, et al.Oxidation resistance improvement of Ni-base single-crystal superalloy melted in a CaO crucible[J]. Metallurgical and Materials Transactions,2019, 50:3903-3911.
[13] KIATWISARNKIJ N, WANGYAO P, ROJHIRUNSAKOOL T, et al.New alloy development from modified cast Ni-base superalloy GTD-111 with additions of Al, Ni and/or Co prepared by vacuum arc melting process[J]. Materials Testing, 2020, 62(7): 665-671.
[14] 赵朋, 杨树峰, 杨曙磊, 等. 镍基高温合金均质化冶炼研究进展[J]. 中国冶金, 2021, 31(4): 1-11.
[15] SIDOROV V V, YAKIMOVICH V P, ALEKSEEV V A.Refining complexly alloyed molten nickel from sulfur impurity to less than 1 ppm during vacuum melting[J].Metallurgist, 2020, 64: 61-66.
[16] 王妤. 基于专利数据的熔炼法制备镍基高温合金的技术研究及发展分析[J]. 有色冶金节能, 2021, 37(5): 82-88.
[17] 刘东方, 姜华, 丁琪, 等. 坩埚材质对K465合金真空感应熔炼过程痕量元素影响规律[J]. 铸造, 2022, 71(12): 1495-1498.
[18] 刘录凯, 王林珠, 冉佳乐.镍基高温合金中夹杂物的研究现状及进展[J].山东化工,2021,50(17):90-92.
[19] GOEL S, MEHTANI H, YAO S, et al.As-built and post-treated microstructures of an electron beam melting (EBM) produced nickel-based superalloy[J]. Metallurgical and Materials Transactions A,2020,51:6546-6559.
[20] 徐海峰,孔建.Sr和Ce对镍基高温合金高温力学及热疲劳性能的影响[J].山东农业大学学报(自然科学版),2020,51(2):320-322.
[21] CAMPBELL J.A future for vacuum arc remelting and electroslag remelting: a critical perspective[J].Metals,2023,13(10): 1634.
[22] KARIMI-SIBAKI E, PEYHA M, VAKHRUSHEV A, et al.Experimental and numerical investigations of arc plasma expansion in an industrial vacuum arc remelting (VAR) process[J].Scientific Reports, 2022,12:20405.
[23] KARIMI-SIBAKI E, KHARICHA A, VAKHRUSHEV A, et al.Numerical modeling and experimental validation of the effect of arc distribution on the as-solidified Ti64 ingot in vacuum arc remelting (VAR) process[J]. Journal of Materials Research and Technology, 2022, 19:183-193.
[24] CUI J J, LI B K, LIU Z Q, et al.Numerical investigation of segregation evolution during the vacuum arc remelting process of Ni-based superalloy ingots[J]. Metals,2021,11(12):2046.
[25] CIBULA M, KING P, MOTLEY J.Feedback-based control over the spatio-temporal distribution of arcs during vacuum arc remelting via externally applied magnetic fields[J]. Metallurgical and Materials Transactions B, 2020,51: 2483-2491.
[26] DESCOTES V, QUATRAVAUX T, BELLOT J P, et al.Titanium nitride (TiN) germination and growth during vacuum arc remelting of a maraging steel[J].Metals,2020 10(4):541.
[27] KANO S, YANG H, ANDO M, et al.Effect of solid solution tungsten on the radiation-induced amorphization in bulk M23C6 fabricated by vacuum induction melting[J]. Journal of Nuclear Materials, 2023, 587: 154740.
[28] WANG J F, XIA M, WU J L, et al.Nozzle clogging in vacuum induction melting gas atomisation: influence of gas pressure and melt orifice diameter coupling[J]. Powder Metallurgy, 2023, 66(4):281-294.
[29] GARCIA-MICHELENA P, CHAMORRO X, HERRERO-DORCA N, et al.Effect of the crucible composition on the inconel 718 vacuum induction melting process efficiency[J]. Journal of Materials Research and Technology,2023, 23: 3351-3361.
[30] YILITI Y, DONG G Y, LIU X Y, et al.The high temperature oxidation behavior of a superalloy prepared by vacuum induction melting and electron beam smelting: a comparative study[J]. Journal of Materials Research and Technology,2023,25:6977-6991.
[31] MIGAS D, ROSKOSZ S, MOSKAL G, et al.Effect of cooling rate on microstructure, microporosity, and segregation behavior of Co-Al-W alloys prepared by vacuum induction melting[J]. JOM,2022, 74(8):2951-2963.
[32] CHEN G Y, YU F H, HOU X, et al.BaZrO3 refractory crucibles for vacuum induction melting of industrial Zr-based bulk metallic glass master alloys with Y addition[J]. Journal of the European Ceramic Society, 2022, 42(8):3644-3651.
[33] LEMKE J N, GALLINO F, CRESCI M, et al.Low-hysteresis shape memory alloy scale-up: DSC, XRD and microstructure analysis on heat-treated vacuum induction melted Ni-Ti-Cu-Pd alloys[J]. Metals, 2021, 11(9): 1387.
[34] MOHAMMED S H, MOHAMMED M A, ALJUBOURI A A, et al.Influence of copper addition on the properties of equiatomic NiTi shape memory alloy prepared by vacuum induction melting method[J].Journal of Physics: Conference Series,2021,1963: 012017.
[35] MEDOVAR L, STOVPCHENKO G, LISOVA L, et al.Features and restrictions of electroslag remelting with silica-bearing slags for lightweight high manganese steel[J]. Steel Research International, 2023,94(11): 2300161.
[36] STOVPCHENKO G P, LISOVA L O, MEDOVAR L B, et al.Thermodynamic and physical properties of CaF2-(Al2O3-TiO2-MgO) system slags for electroslag remelting of inconel 18 alloy[J]. Materials Science 2023,58:494-504.
[37] DUAN Y, LI B, LIU Z, et al.Numerical study on the effect of low-frequency power supply on desulfurization in the electroslag remelting process[J].Steel Research International, 2023, 94(8): 2300081.
[38] AN B, GU Y, JU J T, et al.Fluoride evaporation of low-fluoride CaF2-CaO-Al2O3-MgO-TiO2-(Na2O-K2O) slag for electroslag remelting[J]. Materials, 2023, 16(7): 2777.
[39] MA C K, DENG G D, SUN Z H, et al.Cleanliness improvement and microstructure refinement of H13 die steel by laboratory magnetic-controlled electroslag remelting[J]. Journal of Materials Research and Technology, 2023, 24: 2086-2099.
[40] AMEZHNOV A V, KUTORKINA V A, LEVKOV L Y, et al.Effect of the deoxidation conditions on the titanium loss during electroslag remelting of corrosion-resistant titanium-alloyed steel under AKF235 flux[J].Metallurgist,2022,66:782-791.
[41] CHRISTIAN S, MORITZ E,HERBERT P.Numerical simulations of the molten metal droplet formation in the electroslag remelting process with a rotating electrode[J]. Steel Research International, 2022, 93(12):2100765.
[42] SHI H, QIAO H, LI T, et al.Adaptive mesh refinement method for speeding up numerical simulation of electroslag remelting process[J]. Steel Research International, 2021, 92(5): 2000583.
[43] JU J T, JI G H, TANG C M, et al.The effect of Li2O on the evaporation and structure of low-fluoride slag for vacuum electroslag remelting[J]. Vacuum, 2021, 183: 109920.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[4] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[5] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .
[6] XU Fa-jian, WANG Hai-lei, ZHAO Cai-xia, HUANG Zhi-ting. Application of chemical gases vacuum-compression recovery system in environmental engineering[J]. VACUUM, 2018, 55(5): 29 -33 .
[7] XIE Yuan-hua, HAN Jin, ZHANG Zhi-jun, XU Cheng-hai. Discussion on present situation and development trend of vacuum conveying[J]. VACUUM, 2018, 55(5): 34 -37 .
[8] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[9] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[10] CHANG Zhen-dong, MU Ren-de, HE Li-min, HUANG Guang-hong, LI Jian-ping. Reflectance spectroscopy study on TBCs prepared by EB-PVD[J]. VACUUM, 2018, 55(5): 46 -50 .