欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2025, Vol. 62 ›› Issue (1): 78-85.doi: 10.13385/j.cnki.vacuum.2025.01.13

• Vacuum Metallurgy and Thermal Engineering • Previous Articles     Next Articles

Brief Analysis of the Application of Titanium Alloy in Marine Engineering

HUO Guojing1, ZHAN Chunming2, LIANG Yuanhua1, LING Aijun1   

  1. 1. Offshore Engineering Technology Center of China Classification Society, Tianjin 300457, China;
    2. Shenyang Vacuum Technology Institute Co., Ltd., Shenyang 110042, China
  • Received:2024-06-16 Online:2025-01-25 Published:2025-02-10

Abstract: As an ideal marine engineering material, titanium alloys have been successfully applied in deep-sea submersibles, marine oil and gas exploration, and seawater desalination equipment due to its lightweight, high specific strength, and excellent resistance to seawater corrosion. Firstly, this paper expounds the principal vacuum melting techniques for the preparation of titanium alloys and analyzes the main performance characteristics of titanium alloys used in marine engineering. Then, the domestic and foreign titanium material system of marine engineering are introduced, and the grades, properties and main applications of some titanium alloys used in marine engineering in China are highlighted. Finally, the research progress and application status of titanium alloys in marine engineering facilities are comprehensively described and summarized, and its application prospects are discussed, aiming at providing theoretical reference and practical guidance for further application of titanium alloy.

Key words: titanium alloy, marine engineering, vacuum melting technology, corrosion-resistant, material system

CLC Number:  TG146.21

[1] 常辉, 董月成, 淡振华, 等. 我国海洋工程用钛合金现状和发展趋势[J]. 中国材料进展, 2020, 39(增刊1): 585-590.
[2] AMIGÓ-BORRÁS V, LARIO-FEMENÍA J, AMIGÓ-MATA A, et al. Titanium, titanium alloys and composites[J]. Encyclopedia of Materials: Metals and Alloys, 2022,1: 179-199.
[3] 董月成, 方志刚, 常辉, 等. 海洋环境下钛合金主要服役性能研究[J]. 中国材料进展, 2020, 39(3): 185-190.
[4] 海敏娜, 黄帆, 王永梅. 浅析钛及钛合金在海洋装备上的应用[J]. 金属世界, 2021(5): 16-21.
[5] 王梓骄, 贾雷, 苗庆东, 等. 舰船用钛合金制备技术的研究进展[J]. 中国冶金, 2024, 34(6): 14-25.
[6] 李伟东, 史许娜, 李晨阳, 等. 钛及钛合金铸锭制备工艺发展现状[J]. 钛工业进展, 2024, 41(5): 42-48.
[7] KARIMI-SIBAKI E, KHARICHA A, WU M.A parametric study of the vacuum arc remelting (VAR) process: effects of are radius, side-arcing, and gas cooling[J]. Metallurgical and Materials Transactions B, 2020, 51(1): 222-235.
[8] WANG Y D, ZHANG L F, ZHANG J, et al.Simulation of solidification structure during vacuum arc remelting using cellular automaton-finite element method[J]. Steel Research International, 2022, 93(1): 2100408.
[9] CUI J J, LI B K, LIU Z Q, et al.Numerical investigation of grain structure under the rotating arc based on cellular automata-finite element method during vacuum arc remelting process[J]. Metallurgical and Materials Transactions B, 2023,54:661-672.
[10] ZHAO X H, WANG J C, WANG K X, et al.Numerical simulation and experimental validation on the effect of stirring coils' parameters on TC17 ingot during vacuum arc remelting process[J]. Rare Metal Materials and Engineering, 2023, 52(8): 2676-2682.
[11] WOODSIDE C R, KING P E, NORDLUND C.Arc distribution during the vacuum arc remelting of Ti-6Al-4V[J]. Metallurgical and Materials Transactions B, 2013, 44: 154-165.
[12] 马强, 孙足来, 张哲魁, 等. 大功率真空电子束冷床熔炼炉拉锭机构振动仿真分析[J]. 真空, 2021, 58(5): 104-109.
[13] 雷云清, 马小艳, 张炜华, 等. TC4ELI钛合金的电子束冷床熔炼技术[J]. 金属功能材料, 2023, 30(6): 108-113.
[14] 杜彬, 王龙, 曹寿林, 等. Ti55511钛合金的电子束冷床熔炼技术研究[J]. 金属功能材料, 2022, 29(4): 28-36.
[15] CUI Y P, CHEN Z Y, MA X A, et al.Microstructures and mechanical properties of a new type of high temperature titanium alloy[J]. Materials Science Forum, 2020, 993: 208-216.
[16] FENG Q S, LIC H.Low-cost preparation technologies for titanium alloys: a review[M]. Rijeka: Intech Open, 2022.
[17] 何永亮, 李万青, 严建强, 等. 真空感应悬浮熔炼工艺的自动控制研究[J]. 铸造, 2021, 70(5): 598-602.
[18] 王振玲, 于玉城, 李睿智, 等. 真空感应悬浮熔炼(TiC+TiB)增强钛基复合材料组织及高温拉伸性能研究[J]. 钢铁钒钛, 2021, 42(5): 54-61.
[19] 付毓伟, 赵立平, 赵亚兵, 等. 钛合金在油气勘探开发领域的应用前景[J]. 石油钻采工艺, 2017, 39(5): 662-666.
[20] 邹武装. “海洋金属”钛的特性及应用[J]. 世界有色金属, 2014(8): 28-30.
[21] 王平, 杨绍兰, 杨荭培, 等. 钛合金在油气行业的应用及研究进展[J]. 世界石油工业, 2023, 30(6): 69-78.
[22] 冯秋远. 宝钛海洋装备产品研制及应用进展[R]. 宝鸡: 中国宝钛集团有限公司, 2023.
[23] 祝建雯, 冯毅江, 李佐臣, 等. 海洋装备用钛现状与展望[C]// 中国钢结构协会海洋钢结构分会2010年学术会议暨第六届理事会第三次会议论文集. 洛阳: 中国钢结构协会海洋钢结构分会, 2010: 22-26.
[24] 蒋鹏, 王启, 张斌斌, 等. 深海装备耐压结构用钛合金材料应用研究[J]. 中国工程科学, 2019, 21(6): 95-101.
[25] 席国强. 海洋工程用钛合金室温蠕变及保载疲劳性能研究[D]. 合肥:中国科学技术大学, 2021.
[26] DORAISWAMY D, ANKEM S.The effect of grain size and stability on ambient temperature tensile and creep deformation in metastable beta titanium alloys[J]. Acta Materialia, 2003, 51(6): 1607-1619.
[27] RAMESH A, ANKEM S.The effect of grain size on the ambient temperature creep deformation behavior of a beta Ti-14.8V alloy[J]. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2002, 33: 1137-1144.
[28] AIYANGAR A K, NEUBERGER B W, OBERSON P G, et al.The effects of stress level and grain size on the ambient temperature creep deformation behavior of an alpha Ti-1.6 wt pct V alloy[J]. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2005, 36: 637-644.
[29] PENG J, ZHOU C Y, DAI Q, et al.The temperature and stress dependent primary creep of CP-Ti at low and intermediate temperature[J]. Materials Science and Engineering A, 2014, 611: 123.
[30] WANG L, LI Y Q, SUN C Q, et al.Compressive creep behavior of spherical pressure hull scale model for full-ocean-depth manned submersible[J]. Ocean Engineering, 2022, 266(2): 112831.
[31] 程德彬. 船用钛合金与航空钛合金的使用性能差异[J]. 材料开发与应用, 2012, 27(3): 60-63.
[32] 江洪, 陈亚杨. 钛合金在舰船上的研究及应用进展[J]. 新材料产业, 2018(12): 11-14.
[33] 陈军, 赵永庆, 常辉. 中国船用钛合金的研究和发展[J]. 材料导报, 2005,19(6):67-70.
[34] 杨晶,任晓龙,王涛,等. 海洋工程用超大规格Ti80钛合金锻坯制备研究[J]. 锻压技术, 2021,46(2):19-22.
[35] 李永华,张文旭,陈小龙,等. 海洋工程用钛合金研究与应用现状[J]. 钛工业进展, 2022,39(1):43-48.
[36] 崔维成. “蛟龙”号载人潜水器关键技术研究与自主创新[J]. 船舶与海洋工程, 2012(1):1-8.
[37] 中国日报网.“奋斗者”号潜水器载人舱球壳“钛”厉害[EB/OL].(2020-11-30)[2024-05-10].https://baijiahao.baidu.com/s?id=1684782828625663740&wfr=spider&for=pc.
[38] 王华,赵坦,陈妍. 载人深潜器耐压壳体用金属材料研发进展[J]. 材料开发与应用, 2023,38(3):88-95.
[39] 范丽颖, 刘俊玲, 安红. 钛在海洋工程上的应用现状及前景展望[J]. 中国金属通报, 2006(增刊2): 25-28.
[40] 于宇, 李嘉琪. 国内外钛合金在海洋工程中的应用现状与展望[J]. 材料开发与应用, 2018, 33(3): 111-116.
[1] CHEN Cheng, ZHU Ming-liang, LI Ming-yue, HE Zhen-feng, WANG Zhi-guo, HE Chen. Eddy Current Testing Simulation for Surface Defects for Laser Melting Deposition [J]. VACUUM, 2024, 61(4): 96-101.
[2] ZHANG Hai-chao, LIU Jun-jie. Application of Grinding Process in the Post-treatment Stage of Titanium Alloy Castings [J]. VACUUM, 2024, 61(4): 92-95.
[3] XU Hai-long, FU Bao-quan. Research on Vacuum Preparation and Corrosion Resistance of Titanium Alloys with High Mo Content [J]. VACUUM, 2023, 60(6): 53-60.
[4] LIN Song-sheng, LIU Ruo-yu, TIAN Tian, LÜ Liang, SU Yi-fan, WANG Yun-cheng, SHI Qian, YUN Hai-tao, TANG Peng, ZHENG Cai-feng, YI Chu-shan. Effect of Thickness on Structure and Properties of Cr-CrN-Cr-CrAlN Multilayers [J]. VACUUM, 2023, 60(4): 1-7.
[5] SONG Jing-si, ZHANG Qiang, ZUO Ye, CHEN Jiu-qiang, LI Xiu-zhang, LI Hong-lei, ZHANG Zhe-kui. New Continuous Vacuum Cold Crucible Induction Skull Furnace [J]. VACUUM, 2023, 60(2): 73-77.
[6] CHEN Qu-ping, LIN Song-sheng, LIU Ling-yun, GUO Chao-qian, SHI Qian, WANG Yun-cheng, LÜ Liang, LIU Ruo-yu, YI Chu-shan. Effect of Modulation Structure on Properties of Cr-CrN-Cr-CrAlN Multilayer Films [J]. VACUUM, 2022, 59(3): 29-34.
[7] WANG Yang, ZHANG Gao-hui, WANG Kai, YANG Rong-fei, LI Xiang, SUN Qi-xuan. Laser Ablative Characterization of Fire Resistance for the Titanium Alloy Ti6Al4V Surface by Ion Implanted Copper [J]. VACUUM, 2021, 58(5): 98-103.
[8] WANG Zi-lu, HAO Meng-yi, LI Zhen-xi, LI Jian-jun, HOU Jing-yue. Risk Identification and Precaution of Vacuum Consumable Melting for Titanium Alloys [J]. VACUUM, 2021, 58(3): 71-76.
[9] KONG Yuan, ZHANG Hai-ou, GAO Jian-cheng, CHEN Xi, WANG Gui-lan. Numerical Simulation of Multi-Scale Double Time Steps Multi-Physical Fields During Laser Metal Melting Deposition Process [J]. VACUUM, 2020, 57(4): 77-84.
[10] ZHANG Ying-wei, LI Xiao-dan, GAO Zheng-yu, NI Jia-qiang, LIU Yan-mei, LI Jian-zhong. Research of Electrolytic Polishing on Selective Laser Melting TC4 Alloy in Perchloric Acid Media [J]. VACUUM, 2020, 57(2): 78-82.
[11] LIU Ling-yun, LIN Song-sheng, WANG Di, LI Feng, DAI Ming-jiang, SHI Qian, WEI Chun-bei. Study on Preparation and Properties of CrAlN Anti-erosion Coating [J]. VACUUM, 2020, 57(2): 40-46.
[12] SONG Qing-zhu, DONG Hui, E Dong-mei, WANG Ling-ling, ZHANG Ning, QIAO Zhong-lu. Development of Electromagnetic Levitation Vacuum Melting Casting Technology [J]. VACUUM, 2019, 56(6): 43-48.
[13] WANG Di, LIN Song-sheng, LIU Ling-yun, YANG Hong-zhi, JIANG Bai-ling, XUE Yu-na, ZHOU Ke-song. Research Progress of Surface Treatment Technology on Fatigue Properties of Titanium Alloy [J]. VACUUM, 2019, 56(6): 36-42.
[14] SONG Qing-zhu, ZHANG Zhe-kui, SUN Zu-lai, E Dong-mei. Progress in large-scale titanium alloy casting technology - vacuum arc skull investment casting equipment [J]. VACUUM, 2018, 55(5): 58-61.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[4] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[5] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .
[6] XU Fa-jian, WANG Hai-lei, ZHAO Cai-xia, HUANG Zhi-ting. Application of chemical gases vacuum-compression recovery system in environmental engineering[J]. VACUUM, 2018, 55(5): 29 -33 .
[7] XIE Yuan-hua, HAN Jin, ZHANG Zhi-jun, XU Cheng-hai. Discussion on present situation and development trend of vacuum conveying[J]. VACUUM, 2018, 55(5): 34 -37 .
[8] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[9] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[10] CHANG Zhen-dong, MU Ren-de, HE Li-min, HUANG Guang-hong, LI Jian-ping. Reflectance spectroscopy study on TBCs prepared by EB-PVD[J]. VACUUM, 2018, 55(5): 46 -50 .