VACUUM ›› 2025, Vol. 62 ›› Issue (1): 78-85.doi: 10.13385/j.cnki.vacuum.2025.01.13
• Vacuum Metallurgy and Thermal Engineering • Previous Articles Next Articles
HUO Guojing1, ZHAN Chunming2, LIANG Yuanhua1, LING Aijun1
CLC Number: TG146.21
[1] 常辉, 董月成, 淡振华, 等. 我国海洋工程用钛合金现状和发展趋势[J]. 中国材料进展, 2020, 39(增刊1): 585-590. [2] AMIGÓ-BORRÁS V, LARIO-FEMENÍA J, AMIGÓ-MATA A, et al. Titanium, titanium alloys and composites[J]. Encyclopedia of Materials: Metals and Alloys, 2022,1: 179-199. [3] 董月成, 方志刚, 常辉, 等. 海洋环境下钛合金主要服役性能研究[J]. 中国材料进展, 2020, 39(3): 185-190. [4] 海敏娜, 黄帆, 王永梅. 浅析钛及钛合金在海洋装备上的应用[J]. 金属世界, 2021(5): 16-21. [5] 王梓骄, 贾雷, 苗庆东, 等. 舰船用钛合金制备技术的研究进展[J]. 中国冶金, 2024, 34(6): 14-25. [6] 李伟东, 史许娜, 李晨阳, 等. 钛及钛合金铸锭制备工艺发展现状[J]. 钛工业进展, 2024, 41(5): 42-48. [7] KARIMI-SIBAKI E, KHARICHA A, WU M.A parametric study of the vacuum arc remelting (VAR) process: effects of are radius, side-arcing, and gas cooling[J]. Metallurgical and Materials Transactions B, 2020, 51(1): 222-235. [8] WANG Y D, ZHANG L F, ZHANG J, et al.Simulation of solidification structure during vacuum arc remelting using cellular automaton-finite element method[J]. Steel Research International, 2022, 93(1): 2100408. [9] CUI J J, LI B K, LIU Z Q, et al.Numerical investigation of grain structure under the rotating arc based on cellular automata-finite element method during vacuum arc remelting process[J]. Metallurgical and Materials Transactions B, 2023,54:661-672. [10] ZHAO X H, WANG J C, WANG K X, et al.Numerical simulation and experimental validation on the effect of stirring coils' parameters on TC17 ingot during vacuum arc remelting process[J]. Rare Metal Materials and Engineering, 2023, 52(8): 2676-2682. [11] WOODSIDE C R, KING P E, NORDLUND C.Arc distribution during the vacuum arc remelting of Ti-6Al-4V[J]. Metallurgical and Materials Transactions B, 2013, 44: 154-165. [12] 马强, 孙足来, 张哲魁, 等. 大功率真空电子束冷床熔炼炉拉锭机构振动仿真分析[J]. 真空, 2021, 58(5): 104-109. [13] 雷云清, 马小艳, 张炜华, 等. TC4ELI钛合金的电子束冷床熔炼技术[J]. 金属功能材料, 2023, 30(6): 108-113. [14] 杜彬, 王龙, 曹寿林, 等. Ti55511钛合金的电子束冷床熔炼技术研究[J]. 金属功能材料, 2022, 29(4): 28-36. [15] CUI Y P, CHEN Z Y, MA X A, et al.Microstructures and mechanical properties of a new type of high temperature titanium alloy[J]. Materials Science Forum, 2020, 993: 208-216. [16] FENG Q S, LIC H.Low-cost preparation technologies for titanium alloys: a review[M]. Rijeka: Intech Open, 2022. [17] 何永亮, 李万青, 严建强, 等. 真空感应悬浮熔炼工艺的自动控制研究[J]. 铸造, 2021, 70(5): 598-602. [18] 王振玲, 于玉城, 李睿智, 等. 真空感应悬浮熔炼(TiC+TiB)增强钛基复合材料组织及高温拉伸性能研究[J]. 钢铁钒钛, 2021, 42(5): 54-61. [19] 付毓伟, 赵立平, 赵亚兵, 等. 钛合金在油气勘探开发领域的应用前景[J]. 石油钻采工艺, 2017, 39(5): 662-666. [20] 邹武装. “海洋金属”钛的特性及应用[J]. 世界有色金属, 2014(8): 28-30. [21] 王平, 杨绍兰, 杨荭培, 等. 钛合金在油气行业的应用及研究进展[J]. 世界石油工业, 2023, 30(6): 69-78. [22] 冯秋远. 宝钛海洋装备产品研制及应用进展[R]. 宝鸡: 中国宝钛集团有限公司, 2023. [23] 祝建雯, 冯毅江, 李佐臣, 等. 海洋装备用钛现状与展望[C]// 中国钢结构协会海洋钢结构分会2010年学术会议暨第六届理事会第三次会议论文集. 洛阳: 中国钢结构协会海洋钢结构分会, 2010: 22-26. [24] 蒋鹏, 王启, 张斌斌, 等. 深海装备耐压结构用钛合金材料应用研究[J]. 中国工程科学, 2019, 21(6): 95-101. [25] 席国强. 海洋工程用钛合金室温蠕变及保载疲劳性能研究[D]. 合肥:中国科学技术大学, 2021. [26] DORAISWAMY D, ANKEM S.The effect of grain size and stability on ambient temperature tensile and creep deformation in metastable beta titanium alloys[J]. Acta Materialia, 2003, 51(6): 1607-1619. [27] RAMESH A, ANKEM S.The effect of grain size on the ambient temperature creep deformation behavior of a beta Ti-14.8V alloy[J]. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2002, 33: 1137-1144. [28] AIYANGAR A K, NEUBERGER B W, OBERSON P G, et al.The effects of stress level and grain size on the ambient temperature creep deformation behavior of an alpha Ti-1.6 wt pct V alloy[J]. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2005, 36: 637-644. [29] PENG J, ZHOU C Y, DAI Q, et al.The temperature and stress dependent primary creep of CP-Ti at low and intermediate temperature[J]. Materials Science and Engineering A, 2014, 611: 123. [30] WANG L, LI Y Q, SUN C Q, et al.Compressive creep behavior of spherical pressure hull scale model for full-ocean-depth manned submersible[J]. Ocean Engineering, 2022, 266(2): 112831. [31] 程德彬. 船用钛合金与航空钛合金的使用性能差异[J]. 材料开发与应用, 2012, 27(3): 60-63. [32] 江洪, 陈亚杨. 钛合金在舰船上的研究及应用进展[J]. 新材料产业, 2018(12): 11-14. [33] 陈军, 赵永庆, 常辉. 中国船用钛合金的研究和发展[J]. 材料导报, 2005,19(6):67-70. [34] 杨晶,任晓龙,王涛,等. 海洋工程用超大规格Ti80钛合金锻坯制备研究[J]. 锻压技术, 2021,46(2):19-22. [35] 李永华,张文旭,陈小龙,等. 海洋工程用钛合金研究与应用现状[J]. 钛工业进展, 2022,39(1):43-48. [36] 崔维成. “蛟龙”号载人潜水器关键技术研究与自主创新[J]. 船舶与海洋工程, 2012(1):1-8. [37] 中国日报网.“奋斗者”号潜水器载人舱球壳“钛”厉害[EB/OL].(2020-11-30)[2024-05-10].https://baijiahao.baidu.com/s?id=1684782828625663740&wfr=spider&for=pc. [38] 王华,赵坦,陈妍. 载人深潜器耐压壳体用金属材料研发进展[J]. 材料开发与应用, 2023,38(3):88-95. [39] 范丽颖, 刘俊玲, 安红. 钛在海洋工程上的应用现状及前景展望[J]. 中国金属通报, 2006(增刊2): 25-28. [40] 于宇, 李嘉琪. 国内外钛合金在海洋工程中的应用现状与展望[J]. 材料开发与应用, 2018, 33(3): 111-116. |
[1] | CHEN Cheng, ZHU Ming-liang, LI Ming-yue, HE Zhen-feng, WANG Zhi-guo, HE Chen. Eddy Current Testing Simulation for Surface Defects for Laser Melting Deposition [J]. VACUUM, 2024, 61(4): 96-101. |
[2] | ZHANG Hai-chao, LIU Jun-jie. Application of Grinding Process in the Post-treatment Stage of Titanium Alloy Castings [J]. VACUUM, 2024, 61(4): 92-95. |
[3] | XU Hai-long, FU Bao-quan. Research on Vacuum Preparation and Corrosion Resistance of Titanium Alloys with High Mo Content [J]. VACUUM, 2023, 60(6): 53-60. |
[4] | LIN Song-sheng, LIU Ruo-yu, TIAN Tian, LÜ Liang, SU Yi-fan, WANG Yun-cheng, SHI Qian, YUN Hai-tao, TANG Peng, ZHENG Cai-feng, YI Chu-shan. Effect of Thickness on Structure and Properties of Cr-CrN-Cr-CrAlN Multilayers [J]. VACUUM, 2023, 60(4): 1-7. |
[5] | SONG Jing-si, ZHANG Qiang, ZUO Ye, CHEN Jiu-qiang, LI Xiu-zhang, LI Hong-lei, ZHANG Zhe-kui. New Continuous Vacuum Cold Crucible Induction Skull Furnace [J]. VACUUM, 2023, 60(2): 73-77. |
[6] | CHEN Qu-ping, LIN Song-sheng, LIU Ling-yun, GUO Chao-qian, SHI Qian, WANG Yun-cheng, LÜ Liang, LIU Ruo-yu, YI Chu-shan. Effect of Modulation Structure on Properties of Cr-CrN-Cr-CrAlN Multilayer Films [J]. VACUUM, 2022, 59(3): 29-34. |
[7] | WANG Yang, ZHANG Gao-hui, WANG Kai, YANG Rong-fei, LI Xiang, SUN Qi-xuan. Laser Ablative Characterization of Fire Resistance for the Titanium Alloy Ti6Al4V Surface by Ion Implanted Copper [J]. VACUUM, 2021, 58(5): 98-103. |
[8] | WANG Zi-lu, HAO Meng-yi, LI Zhen-xi, LI Jian-jun, HOU Jing-yue. Risk Identification and Precaution of Vacuum Consumable Melting for Titanium Alloys [J]. VACUUM, 2021, 58(3): 71-76. |
[9] | KONG Yuan, ZHANG Hai-ou, GAO Jian-cheng, CHEN Xi, WANG Gui-lan. Numerical Simulation of Multi-Scale Double Time Steps Multi-Physical Fields During Laser Metal Melting Deposition Process [J]. VACUUM, 2020, 57(4): 77-84. |
[10] | ZHANG Ying-wei, LI Xiao-dan, GAO Zheng-yu, NI Jia-qiang, LIU Yan-mei, LI Jian-zhong. Research of Electrolytic Polishing on Selective Laser Melting TC4 Alloy in Perchloric Acid Media [J]. VACUUM, 2020, 57(2): 78-82. |
[11] | LIU Ling-yun, LIN Song-sheng, WANG Di, LI Feng, DAI Ming-jiang, SHI Qian, WEI Chun-bei. Study on Preparation and Properties of CrAlN Anti-erosion Coating [J]. VACUUM, 2020, 57(2): 40-46. |
[12] | SONG Qing-zhu, DONG Hui, E Dong-mei, WANG Ling-ling, ZHANG Ning, QIAO Zhong-lu. Development of Electromagnetic Levitation Vacuum Melting Casting Technology [J]. VACUUM, 2019, 56(6): 43-48. |
[13] | WANG Di, LIN Song-sheng, LIU Ling-yun, YANG Hong-zhi, JIANG Bai-ling, XUE Yu-na, ZHOU Ke-song. Research Progress of Surface Treatment Technology on Fatigue Properties of Titanium Alloy [J]. VACUUM, 2019, 56(6): 36-42. |
[14] | SONG Qing-zhu, ZHANG Zhe-kui, SUN Zu-lai, E Dong-mei. Progress in large-scale titanium alloy casting technology - vacuum arc skull investment casting equipment [J]. VACUUM, 2018, 55(5): 58-61. |
|