欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2025, Vol. 62 ›› Issue (3): 76-83.doi: 10.13385/j.cnki.vacuum.2025.03.14

• Measurement and Control • Previous Articles     Next Articles

Thermal Conductivity Measurement and Stability Analysis of Vacuum Carbon Tube Furnace by Reference Sample Method

ZHAN Chunming1, WANG Ligang2, FAN Changlong3, ZHANG PIxian1, WANG Jie1, E Dongmei1, WANG Lingling1, QIAO Zhonglu1, LIU Shimeng1, SONG Qingzhu1   

  1. 1. Shenyang Vacuum Technology Institute Co., Ltd., Shenyang 110042, China;
    2. School of Materials Science and Engineering, Yingkou Institute of Technology, Yingkou 115000, China;
    3. Liaoning Weiyan Corrugated Pipe Manufacturing Co., Ltd., Yingkou 115000, China
  • Received:2024-10-25 Online:2025-05-25 Published:2025-05-23

Abstract: Based on the principle of reference sample method, a set of measuring device for material effective thermal conductivity is designed and its working stability is evaluated. Firstly, carbon fiber felt was used to verify the stability of the measuring device, and then the thermal conductivity of stainless steel, copper and graphite under different conditions was tested and compared with the theoretical value. Finally, the influence of temperature, ambient atmosphere and resin content on the thermal conductivity of carbon fiber felt was systematically studied. The results show that the measurement accuracy of the thermal conductivity of stainless steel and copper is high in the range of 0-700 ℃, but it is not suitable for graphite. With the increase of temperature and resin content, the thermal conductivity of carbon fiber felt increases significantly, which provides an important reference for the optimization of thermal properties of materials.

Key words: vacuum carbon tube furnace, reference sample method, effective thermal conductivity, vacuum atmosphere

CLC Number:  TB31;TB32

[1] 何其振,刘钧,王旭,等. 基于热传导技术的数据中心冷却系统的研究与应用[J]. 电信工程技术与标准化,2016,29(6):21-25.
[2] 陈文哲,王霜,翟玉玲,等. 颗粒团聚状态对纳米流体热导率的影响[J]. 化工进展, 2023, 42(11): 5700-5706.
[3] 何端鹏,张磊,高鸿,等.碳纤维热导率与其微观结构参数的关系[J].宇航材料工艺,2023,53(2):105-110.
[4] LIU X Y, LV X H, TIAN Q F, et al.Silica binary hybrid particles based on reduced graphene oxide for natural rubber composites with enhanced thermal conductivity and mechanical properties[J]. Advanced Composites and Hybrid Materials, 2023, 6:141.
[5] HAMZA M M, SULEIMAN B A, AHMAD K K, et al.Nonlinear-mixed convection flow with variable thermal conductivity impacted by asymmetric/symmetric heating/cooling conditions[J]. Arabian Journal for Science and Engineering, 2024, 49(11):14763-14772.
[6] ABDOU A,BUDAIWI I.The variation of thermal conductivity of fibrous insulation materials under different levels of moisture content[J]. Construction and Building Materials,2013,43(3):533-544.
[7] CHEN W H, IKEHATA R.Optimal large-time estimates and singular limits for thermoelastic plate equations with the Fourier law[J]. Mathematical Methods in the Applied Sciences, 2023, 46(14): 14841-14866.
[8] ENYI C D.General stability of a triple layer beam with time-varying delay and weak internal damping[J]. Partial Differential Equations in Applied Mathematics, 2024, 10:100714.
[9] 李月锋,张东. 高温复合相变材料的导热强化方法、热循环稳定性及储放热特性的研究[C]//第一届全国储能科学与技术大会摘要集. 上海:中国化工学会储能工程专业委员会, 2014.
[10] 黄由之,全永凯,徐国强,等. 基于拉普拉斯变换的瞬态热流测量方法[J/OL].北京航空航天大学学报,2023.(2023-03-10)[2024-10-24].https://navi.cnki.net/knavi/journals/BJHK/detail?uniplatform=NZKPT.
[11] 林旭文. 炭化材料热解过程热导率的辨识研究[D].哈尔滨:哈尔滨工业大学,2022.
[12] 潘永杲,周逸,闵琪涛,等. 稳态法导热系数测定仪校准方法及其不确定度评定[J].计量与测试技术, 2022, 49(9):107-110.
[13] 罗伟莉,王雯雯,潘权稳,等. 基于活性碳纤维毡复合吸附剂的储热性能[J].化工学报,2021,72(增刊1): 554-559.
[14] 陈家琪. 电子束熔丝沉积304不锈钢不同结构的性能研究[D].桂林:桂林理工大学,2023.
[15] 马睿. 周期性纳米结构表面等离子体物理特性及应用研究[D].北京:北京邮电大学,2019.
[16] 王梓任. 直流电弧光谱法测定石墨样品中微量元素的含量[D].北京:北京有色金属研究总院,2018.
[17] 李迪. 基于“石墨”基阻燃剂改性聚氯乙烯的研究[D].天津:天津工业大学, 2023.
[18] 宋静思,谭永宁,陈久强,等. 液态金属冷却定向凝固/单晶炉的现状与展望[J].真空, 2023, 60(6): 61-65.
[19] 靳晓磊. RH炉提高脱碳速度及降低终点碳的研究[J].特钢技术, 2018, 24(3): 24-36.
[20] 董莉. 浮空器囊体材料的气密性研究[J].真空, 2024, 61(2): 68-72.
[21] 祁松松,倪俊,李卓慧,等. 超大型真空容器大门设计及优化研究[J].真空, 2023, 60(5): 81-85.
[22] 翟定荣,周海,史有森,等. 预抽真空可控气氛渗碳炉的工艺优化研究[J].热处理技术与装备, 2022, 43(3):1-5.
[23] 卢波,姚丙南,马双伟,等. 2 500 ℃超高温真空(气氛)环境材料力学性能试验装置研发[J].工程与试验, 2022, 62(4):88-91.
[24] 董朝望. 低氧钛合金粉末的金属热还原制备及成形工艺研究[D].长沙:中南大学,2023.
[25] ZHU Y, YU M Y, LYU Q J, et al.Effects of the high-temperature sensitization in argon atmosphere on the microstructure and properties of polycrystalline PbSe films[J].Materials Science in Semiconductor Processing, 2023,162:100714.
[26] 吴晃,叶崇,刘洪波,等. 沥青基碳纤维热导率的间接法测量[J].宇航材料工艺, 2017,47(6): 83-86.
[27] 毕冬梅. 低温真空下接触界面间传热特性实验与机理分析[D].武汉:华中科技大学, 2013.
[28] 马双彦,王恩泽,鲁伟员,等. 金刚石/铜复合材料热导率研究[J].热加工工艺, 2008,37(4):36-38.
[29] 李密. 石墨烯复合材料的制备及其介电性能与导热性能的研究[D].上海:上海交通大学, 2013.
[30] 郭瑾. 树脂基复合材料热解层模型及高温热物性测试研究[D].北京:北京交通大学, 2021.
[1] GUO Qin-liang, WU Yue, SUN Juan, LI Qiong, WEI Xi. A Review of Research on Frosting Phenomenon [J]. VACUUM, 2020, 57(3): 67-72.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!