欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2025, Vol. 62 ›› Issue (4): 7-8.doi: 10.13385/j.cnki.vacuum.2025.04.02

• Measurement and Control • Previous Articles     Next Articles

Design of a Multi-Parameter Feedback-Based RPA Control Engine and Dynamic Arc Extinction Optimization for Vacuum Switching Devices

SUN Xu, HU Jintao, CHENG Tiejun   

  1. Yantai Dongfang Weisiton Electric Co., Ltd., Yantai 264000, China
  • Received:2024-08-15 Online:2025-07-25 Published:2025-07-24

Abstract: To enhance the operational reliability of integrated vacuum interrupter devices under extreme conditions, a real-time process automation (RPA) control engine based on multi-parameter feedback and a composite arc-extinguishing strategy combining magnetic blowing and pulsed airflow is proposed. A closed-loop feedback mechanism is established by constructing a dynamic vacuum threshold classification model, a Kalman filter-based leakage rate compensation algorithm, and a spectral inversion method for contact ablation. A dual-mode cooperative control architecture combining fuzzy PID and deep reinforcement learning ensures millisecond-level precision in opening and closing operations. Coupled with magnetic field gradient focusing and timed airflow matching, a multi-path energy dissipation model for arc plasma is formed. Experimental results show that the vacuum fluctuation range is reduced from ±12.3% to ±4.2%, the arc re-ignition probability drops from 1.5% to 0.3%, and the dielectric recovery strength increases by 27.6%. This study provides theoretical and technical support for the intelligent upgrading of vacuum interrupter devices and is applicable to circuit breaker performance optimization in scenarios such as renewable energy integration and DC distribution networks.

Key words: vacuum switching device, RPA control engine, dynamic arc extinction optimization, multi-parameter feedback, dual-mode cooperative control

CLC Number:  TM561.2

[1] 荣一鸣,孙佳佳,史宗谦,等. 真空有载分接开关中真空灭弧室触头合闸行为研究[J]. 高电压技术,2025,51(4):1969-1979.
[2] 胡宗山. 高压开关柜中真空断路器触头磨损诊断技术[J]. 今日制造与升级,2025(2):145-147.
[3] 刘锦辉,虞江华,黄辰辰,等. 基于快速真空断路器技术的发电机出口断路器装置[J]. 宁夏电力,2020(5):29-33.
[4] 尚文祥,李继鹏,赵筱赫. 真空灭弧室弧后介质特性仿真分析[J]. 河南工学院学报,2023,31(4):22-26.
[5] 赵彦辉,史文博,刘忠海,等. 电弧离子镀沉积工艺参数的影响[J]. 真空,2018,55(6):49-59.
[6] 李璨,咸日常,崔永,等. KYN系列12 kV开关柜真空断路器灭弧室触头温度间接测算[J]. 高电压技术,2023,49(10):4355-4363.
[7] LIU S, MA H, HU F, et al.Vacuum arc evolution characteristics in low-voltage DC current interruption under composite transverse magnetic fields[J]. IEEE Transactions on Plasma Science, 2021, 49(12): 3927-3934.
[8] WĘGIEREK P, KOSTYŁA D, LECH M, et al. Pressure monitoring in medium-voltage vacuum interrupters[J]. Energies, 2023, 16(18): 6562.
[9] YOON J, KWON J, JUNG J, et al.Prediction of vacuum circuit breaker condition based arcing energy[C]//2024 10th International Conference on Condition Monitoring and Diagnosis (CMD). Gangneung, Korea: IEEE, 2024: 652-654.
[10] XUE C, LI X, LIU S, et al.Technical study for complete one-time sealing of vacuum interrupter[C]//MATEC Web of Conferences. EDP Sciences, 2021, 336: 01014.
[11] XU J, ARMSTRONG M, AL-GREER M.Centralized system identification of multi-rail power converter systems using an iterative decimation approach[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2021, 68(8): 3520-3533.
[12] 张敬涛,闫姿姿,于洪宇,等.不同触头压力下真空灭弧室温升分布研究[J].真空科学与技术学报,2021,41(4):348-351.
[13] HAN N, LI P, WANG X J, et al.Analysis of the microstructure of the melted layer of CuCr contact after arc action[C]//2024 7th International Conference on Electric Power Equipment-Switching Technology (ICEPE-ST). Xiamen, China: IEEE, 2024: 1-4.
[14] WEN X, LI Y, ZHOU X, et al.Phase retrieval with dynamic linear combination in multiple intensity measurements[J]. Optics and Lasers in Engineering, 2022, 159: 107200.
[15] LI P, LIU X, CHEN H, et al.Multi-objective optimization of repulsive force actuator for vacuum circuit breaker[C]//2023 30th International Symposium on Discharges and Electrical Insulation in Vacuum (ISDEIV). Okinawa, Japan: IEEE, 2023: 341-342.
[16] CHEN H, LIU X, LI L, et al.Analysis of dynamic arc parameters for vacuum circuit breaker under short-circuit current breaking[J]. IEEE Transactions on Applied Superconductivity, 2019, 29(2): 0601905.
[17] 李昊,王东伟,张川,等. 电弧离子镀Cr/CrN多层膜的耐腐蚀性研究[J]. 真空,2019,56(3):21-26.
[18] 刘兴龙,沈佩,王光文,等. 真空电弧源冷却结构对温度场的影响研究[J]. 真空,2022,59(6):29-33.
[19] WANG D, HU M.Deep deterministic policy gradient with compatible critic network[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 34(8): 4332-4344.
[20] WEN W, ZHANG Q, CHU X Y, et al.Compliant control based on the DDPG method for on-orbit capture[C]//2023 IEEE 18th Conference on Industrial Electronics and Applications (ICIEA). Ningbo, China: IEEE, 2023: 1042-1047.
[21] SHI Z Q, LV X K, GUO J, et al.Experimental investigation on the evolution of vacuum arc in the quench protection switch based on forced current zero[J]. Physics of Plasmas, 2022, 29(9):093504.
[22] PETRENYA Y K, FROLOV V Y, KRISKOVETS D S, et al.The influence of electric arc plasma turbulence on heat transfer processes involving powder materials[J]. Energies, 2023, 16(15): 5632.
[23] GUO J, DAI H, LI L.Analysis of influence factors on shock wave overpressure peak of high current pulsed arc[C]//2022 IEEE International Conference on High Voltage Engineering and Applications (ICHVE). Chongqing, China: IEEE, 2022: 1-4.
[24] 刘宁宁,景建元,赵海云,等. TC4钛合金热氧化真空处理后表面性能的变化[J]. 金属加工(热加工), 2021(8): 84-86.
[25] 王文成,张朋,李秀峰,等.12 kV真空断路器灭弧室结构对电场分布影响的仿真研究[J].真空科学与技术学报,2021,41(11):1031-1038.
[26] WU W H, XU Z H.Design of arc generator based on electromechanical coupling closed-loop fuzzy control[C]//Proceedings of 2021 Chinese Intelligent Systems Conference: Volume I. Singapore: Springer Singapore, 2021: 547-560.
[27] SUN J J, XU Z H.Research on arc fault simulation device based on closed-loop feedback control[C]//2022 IEEE 5th International Conference on Automation, Electronics and Electrical Engineering (AUTEEE). Shenyang, China: IEEE, 2022: 295-299.
[28] 刘晓明,李国铮,陈海,等.真空旁路开关灭弧室绝缘仿真及不确定性分析[J].真空科学与技术学报,2024,44(9):805-810.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[4] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[5] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .
[6] XU Fa-jian, WANG Hai-lei, ZHAO Cai-xia, HUANG Zhi-ting. Application of chemical gases vacuum-compression recovery system in environmental engineering[J]. VACUUM, 2018, 55(5): 29 -33 .
[7] XIE Yuan-hua, HAN Jin, ZHANG Zhi-jun, XU Cheng-hai. Discussion on present situation and development trend of vacuum conveying[J]. VACUUM, 2018, 55(5): 34 -37 .
[8] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[9] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[10] CHANG Zhen-dong, MU Ren-de, HE Li-min, HUANG Guang-hong, LI Jian-ping. Reflectance spectroscopy study on TBCs prepared by EB-PVD[J]. VACUUM, 2018, 55(5): 46 -50 .