欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2025, Vol. 62 ›› Issue (4): 22-28.doi: 10.13385/j.cnki.vacuum.2025.04.04

• Measurement and Control • Previous Articles     Next Articles

Research on Reliability Technology of Electron Beam Trajectory Control in Complex Electromagnetic Environment

LIU Mingyuan1,2, WANG Xulei1,2, YOU Yunlong1,2   

  1. 1. Institute of Physical and Chemical Engineering of Nuclear Industry, Tianjin 300180, China;
    2. National Key Laboratory of Particle Transport and Separation Technology, Tianjin 300180, China
  • Received:2024-11-11 Online:2025-07-25 Published:2025-07-24

Abstract: This article focuses on the possible electromagnetic compatibility issues of the electron beam magnetic field control power supply in complex electromagnetic environments accompanied by electron gun firing conditions. The signal of magnetic field control power supply is collected based on FPGA technology. A simulation test platform was built to determine the typical forms of interference sources that affect the magnetic field control power supply, and the strength and frequency range of interference sources were tested. The filtering circuits in output terminal and control circuit of magnetic field control power supply were designed to suppress external environmental interference. By using MOSFET and resistor series parallel combination for transient voltage division, the ignition energy of the electron gun is instantly absorbed. The optimized electron beam trajectory control system can enhance the electromagnetic compatibility of the system.

Key words: electron beam trajectory, magnetic field control power supply, common mode interference, electronic gun firing, transient voltage equalization

CLC Number:  TM924.16

[1] 许世娇,权纯逸,杨堃,等.金属增材制造技术在航空领域的应用现状及前景展望[J].粉末冶金工业, 2022, 32(3): 9-17.
[2] 李宏新,李阳,余业锋,等.电子束选区熔化成形工艺与组织模拟[J]. 电加工与模具, 2021(增刊1): 5-15.
[3] 卢儒学,刘海浪,王小宇,等.电子束熔覆技术的研究现状与发展[J].热加工工艺, 2022,51(8): 15-19.
[4] 贾子朝,郭志伟,高学林.高精度电子束偏转系统优化建立与仿真研究[J].真空, 2024, 61(2):47-52.
[5] 陈荣发. 电子束蒸发与磁控溅射镀铝的性能分析研究[J]. 真空, 2003,40(2): 11-15.
[6] PARKER R K, ABRAMS R H, DANLY B G, et al.Vacuum electronics[J]. IEEE Transactions on Microwave Theory and Techniques, 2002, 50(3): 835-845.
[8] 廖燕, 贾宝富, 罗正祥 . 轴对称收敛型电子枪设计方法再讨论[J]. 强激光与粒子束, 2005, 17(3): 427-430.
[9] 张秉刚, 吴林, 冯吉才 . 国内外电子束焊接技术研究现状[J]. 焊接, 2004(2): 5-8.
[10] 刘明远,王绪磊,游云龙.大功率电子枪电源电能优化技术[J].电气应用, 2024, 43(7):107-113.
[11] 陈蕊. 磁聚焦系统快速设计及其自动测量系统[D].成都:电子科技大学,2024.
[12] 刘平,姜自莲,江书勇.行波管磁环及磁系统自动测试系统机械装置设计[J].成都电子机械高等专科学校学报, 2006(1):1-2.
[13] 司青润,董全林,桑兴华.100 kV焊接用电子枪的设计和优化[J].航空制造技术, 2021(21): 96-100.
[14] WANG S Z, RUAN C J, ZHONG Y.The design of W-band extended interaction klystron electron optics system[C]// IVEC 2012. Monterey, CA: IEEE, 2012.
[15] YUAN X S, ZHANG Y, YANG H, et al.A gridded high compression-ratio carbon nanotube cold cathode electron gun[J]. IEEE Electron Device Letters, 2015, 36(4): 399-401.
[16] 郭志伟,贾子朝,高学林.磁场变化对电子束传输轨迹的影响分析[J].信息记录材料, 2022,23(1):242-245.
[17] 程福懋. 电子枪的结构设计[J].真空电子技术, 1995(2):7-11.
[18] 贾子朝,郭志伟,高学林.阴极偏心对坩埚内电子分布状态的影响分析[J].中国机械, 2023(25):2-6.
[19] READ M E, JABOTINSK I V, MIRAM G, et al.Design of a girded gun an PRM-focusing structure for a high-power sheet electron beam[J]. IEEE Transactions on Plasma Science, 2005, 33(2): 647-653.
[20] 周德学. 安培力与洛伦兹力关系辨析[J].新课程(下), 2017(9):80.
[21] 朱玉元. 洛伦兹力的冲量特点在带电粒子运动中的应用[J].物理教师, 2022, 43(5):84-86.
[22] 吴权恒陈云飞.论安培力与洛伦兹力的关联性[J].科技风, 2024(22):21-24.
[23] 韦寿祺,莫金海,何少佳.大功率电子束轰击炉电子枪电源控制策略[J].真空科学与技术学报, 2008(2):148-152.
[24] 莫金海, 林伟, 陶辉. Zeta型电子束焊机高压稳定电源的纹波抑制与稳压[J].现代电子技术, 2019,42(5):115-118.
[25] 全国电磁兼容标准化技术委员会.电磁兼容试验和测量技术射频场感应的传导骚扰抗扰度GB/T 17626.6- 2017[S].北京:中国标准出版社,2017.
[26] 王利然, 吴小华, 白凡玉. 直流浪涌电压吸收方法及电路研究[J]. 电源技术, 2012, 36(8):1209-1212.
[27] 张忠连, 吴多龙. 瞬态电压抑制器及其应用[J]. 科技资讯, 2008(10):240-241.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[4] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[5] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .
[6] XU Fa-jian, WANG Hai-lei, ZHAO Cai-xia, HUANG Zhi-ting. Application of chemical gases vacuum-compression recovery system in environmental engineering[J]. VACUUM, 2018, 55(5): 29 -33 .
[7] XIE Yuan-hua, HAN Jin, ZHANG Zhi-jun, XU Cheng-hai. Discussion on present situation and development trend of vacuum conveying[J]. VACUUM, 2018, 55(5): 34 -37 .
[8] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[9] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[10] CHANG Zhen-dong, MU Ren-de, HE Li-min, HUANG Guang-hong, LI Jian-ping. Reflectance spectroscopy study on TBCs prepared by EB-PVD[J]. VACUUM, 2018, 55(5): 46 -50 .