欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2024, Vol. 61 ›› Issue (5): 97-109.doi: 10.13385/j.cnki.vacuum.2024.05.13

Previous Articles     Next Articles

The Role of Vacuum Technology in Analytical Technology:Application of TOF-SIMS to the Characterization of Mineral Samples

WANG Fu-fang1,2, XU Zi-qi3, GUO Chong4, LIANG Han-dong1,2, LI Zhan-ping4   

  1. 1. State Key Laboratory for Fine Exploration and Intelligent Development of Coal Resources, Beijing 100083, China;
    2. College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China;
    3. Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100092, China;
    4. Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
  • Received:2024-05-16 Online:2024-09-25 Published:2024-10-10

Abstract: The study of mineral samples is the basis of mineralogy, petrology, mineral deposit and other geological disciplines. The surface morphology, element composition and distribution characteristics of minerals can reveal the source of ore-forming materials, ore-forming process and geological history. This paper describes the principle, technical advantages and vacuum condition of TOF-SIMS, which has wide application potential for mineral sample characterization, focuses on summarizing the research progress and existing problems of the application of TOF-SIMS by domestic and foreign scholars in mineral identification, mineral imaging, quantitative analysis and in-depth analysis of mineral composition and mineral processing, and makes prospects in related fields.

Key words: mineral characterization, time-of-flight secondary ion mass spectrometry, imaging analysis

CLC Number:  P575.9

[1] CARBONNE J M, KISS A, BOUVIER A, et al.Surface analysis by secondary ion mass spectrometry (SIMS): principles and applications from Swiss laboratories[J]. CHIMIA, 2022, 76(1/2): 26-33.
[2] XU Z, LI S, GUO C, et al.Change of surface oxide layer of pyrite samples prepared by resin embedding polishing method after long-term placement and its effect on TOF-SIMS analysis[J]. Surfaces and Interfaces, 2024, 46: 104124.
[3] PASTERSKI M J, LORENZ M, IEVLEV A V, et al.The determination of the spatial distribution of indigenous lipid biomarkers in an immature Jurassic sediment using time-of-flight-secondary ion mass spectrometry[J]. Astrobiology, 2023, 23(9): 936-950.
[4] HUANG X F, ZHANG Q.Depression mechanism of acid for flotation separation of fluorapatite and dolomite using ToF-SIMS and XPS[J]. Journal of Molecular Liquids, 2024, 394: 123584.
[5] ENGRAND C, LESPAGNOL J, MARTIN P, et al. Multi-correlation analyses of TOF-SIMS spectra for mineralogical studies[J]. Applied Surface Science, 2004,231/232: 883-887.
[6] ENGRAND C, KISSEL J, KRUEGER F R, et al.Chemometric evaluation of time-of-flight secondary ion mass spectrometry data of minerals in the frame of future in situ analyses of cometary material by COSIMA onboard ROSETTA[J]. Rapid Communications in Mass Spectrometry, 2006, 20(8): 1361-1368.
[7] VARMUZA K, FILZMOSER P, HILCHENBACH M, et al.KNN classification — evaluated by repeated double cross validation: recognition of minerals relevant for comet dust[J]. Chemometrics and Intelligent Laboratory Systems, 2014, 138: 64-71.
[8] KALEGOWDA Y, HARMER S L.Chemometric and multivariate statistical analysis of time-of-flight secondary ion mass spectrometry spectra from complex Cu-Fe sulfides[J]. Analytical Chemistry, 2012, 84(6): 2754-2760.
[9] KALEGOWDA Y, HARMER S L.Classification of time-of-flight secondary ion mass spectrometry spectra from complex Cu-Fe sulphides by principal component analysis and artificial neural networks[J]. Analytica Chimica Acta, 2013, 759: 21-27.
[10] RINNEN S, STROTH C, RIßE A, et al. Characterization and identification of minerals in rocks by ToF-SIMS and principal component analysis[J]. Applied Surface Science, 2015, 349: 622-628.
[11] STOWE K G, CHRYSSOULIS S L, KIM J Y.Mapping of composition of mineral surfaces by TOF-SIMS[J]. Minerals Engineering, 1995, 8(4): 421-430.
[12] LAI H, DENG J S, LIU Z L, et al.Determination of Fe and Zn contents and distributions in natural sphalerite/marmatite by various analysis methods[J]. Transactions of Nonferrous Metals Society of China, 2020,30(5):1364-1374.
[13] 王涛, 葛祥坤, 范光, 等. FIB-TOF-SIMS联用技术在矿物学研究中的应用[J]. 铀矿地质, 2019, 35(4): 247-252.
[14] 李展平. 飞行时间二次离子质谱(TOF-SIMS)分析技术[J]. 矿物岩石地球化学通报, 2020, 39(6): 1173-1190.
[15] MATHEZ E A, MOGK D M.Characterization of carbon compounds on a pyroxene surface from a gabbro xenolith in basalt by time-of-flight secondary ion mass spectrometry[J]. The American Mineralogist, 1998, 83(7/8):918-924.
[16] TIMMS N E, KIRKLAND C L, CAVOSIE A J, et al.Shocked titanite records Chicxulub hydrothermal alteration and impact age[J]. Geochimica et Cosmochimica Acta, 2020, 281: 12-30.
[17] SAUNDERS K, RINNEN S, BLUNDY J, et al.TOF-SIMS and electron microprobe investigations of zoned magmatic orthopyroxenes: first results of trace and minor element analysis with implications for diffusion modeling[J]. American Mineralogist, 2012, 97(4): 532-542.
[18] 梁汉东. 地质流体包裹体化学组成的离子成像方法研究[C]//中国地球物理学会第二十五届年会论文集. 合肥:中国地球物理学会,2009.
[19] 李大鹏,杜杨松, SCOTT S D,等. 幔源角闪石巨晶中硫化物熔融包裹体研究[J]. 地质学报, 2012, 86(7):1091-1105.
[20] PUTNIS C V, GEISLER T, SCHMID-BEURMANN P, et al.An experimental study of the replacement of leucite by analcime[J]. American Mineralogist, 2007, 92(1): 19-26.
[21] ACHIWAWANICH S, JAMES B D, LIESEGANG J.XPS and ToF-SIMS analysis of natural rubies and sapphires heat-treated in a reducing (5mol% H2/Ar) atmosphere[J]. Applied Surface Science, 2008, 255(5): 2388-2399.
[22] RINNEN S, GRÖGER-TRAMPE J, OSTERTAG-HENNING C, et al. ToF-SIMS as a tool for mapping reaction products of coupled dissolution-precipitation processes at mineral grain surfaces[J]. Surface and Interface Analysis, 2014, 46(S1): 330-333.
[23] 刘宇豪, 洪秀萍, 梁汉东, 等. 云贵川交界地氟病区煤系黏土-黄铁矿的风化[J]. 环境化学, 2019, 38(6):1318-1327.
[24] CAO Q Y, QIAN Y H, LIANG H D, et al.Mercury forms and their transformation in pyrite under weathering[J]. Surface and Interface Analysis, 2020, 52(5): 283-292.
[25] MARQUES A F A, SCOTT S D, SODHI R N S. Time-of-fligt SIMS(TOF-SIMS) analyses of melt inclusions[J]. The Canadian Mineralogist, 2012, 50(5): 1305-1320.
[26] SHAHWAN T, ERTEN H N, BLACK L, et al.TOF-SIMS study of Cs+ sorption on natural kaolinite[J]. The Science of the Total Environment, 1999, 226(2/3): 255-260.
[27] SHAHWAN T, ERTEN H N, BLACK L, et al.ToF-SIMS depth profiling analysis of the uptake of Ba2+ and Co2+ ions by natural kaolinite clay[J]. Journal of Colloid and Interface Science, 2004, 277(1): 23-28.
[28] DENG J S, LAI H, WEN S M, et al.Confirmation of interlayer sulfidization of malachite by TOF-SIMS and principal component analysis[J]. Minerals, 2019, 9(4): 204.
[29] 陈哲, 夏柳荫, HART B, 等. 球磨介质及尺寸对铜锌矿矿浆化学性质及矿物表面化学性质的影响[J]. 中国有色金属学报, 2017, 27(8): 1701-1707.
[30] BRITO E ABREU S, SKINNER W. Determination of contact angles, silane coverage, and hydrophobicity heterogeneity of methylated quartz surfaces using ToF-SIMS[J]. Langmuir, 2012, 28(19): 7360-7367.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[4] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[5] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .
[6] XU Fa-jian, WANG Hai-lei, ZHAO Cai-xia, HUANG Zhi-ting. Application of chemical gases vacuum-compression recovery system in environmental engineering[J]. VACUUM, 2018, 55(5): 29 -33 .
[7] XIE Yuan-hua, HAN Jin, ZHANG Zhi-jun, XU Cheng-hai. Discussion on present situation and development trend of vacuum conveying[J]. VACUUM, 2018, 55(5): 34 -37 .
[8] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[9] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[10] CHANG Zhen-dong, MU Ren-de, HE Li-min, HUANG Guang-hong, LI Jian-ping. Reflectance spectroscopy study on TBCs prepared by EB-PVD[J]. VACUUM, 2018, 55(5): 46 -50 .