欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2025, Vol. 62 ›› Issue (2): 47-51.doi: 10.13385/j.cnki.vacuum.2025.02.07

• Vacuum Acquisition System • Previous Articles     Next Articles

C-band Miniaturized High Power Multi-Beam Klystron for Industrial Accelerators

WEI Bo, LI Dongfeng, WANG Jiasong, LI Chuang, WANG Gang   

  1. Beijing Vacuum Electronics Research Institute, Beijing 100015, China
  • Received:2024-10-30 Online:2025-03-25 Published:2025-03-24

Abstract: Miniaturized high-power multi beam klystron is an ideal power source for electron linac for NDT, medical and industrial irradiation. This paper briefly introduces a new C-band 3 MW miniaturized high-power multi beam klystron developed by Beijing Vacuum Electronics Research Institute. In order to achieve high power and miniaturization performance of the device, technologies such as transverse coupled coaxial cavities, period permanent magnet system, half wavelength box shaped energy transmission window are used and described. The device test results show that the peak output power is greater than 3.3 MW, the average power is greater than 6.6 kW, and the mass is less than 25 kg, which can meet the requirements of industrial accelerators, and a series of C-band products with output power from 1 MW to 5 MW may be formed.

Key words: C-band, 3 MW high-power microwave, permanent magnet focusing, klystron

CLC Number:  TN122

[1] LOPIN M I, PEBEDONOSTSEV A S, MISHKIN A S, et al.High-power multiple-beam klystrode for UHF-band TV-transmitters[C]//Proceedings International University Conference 'Electronics and Radiophysics of Ultra-High Frequencies'. St. Petersburg, Russia: IEEE, 1999: 53-55.
[2] RUAN C J, WANG S Z, XIE J X, et al.Development of sheet beam electron optics system for W-band klystron[C]//2010 IEEE International Vacuum Electronics Conference. Monterey, CA, USA: IEEE, 2010: 39-40.
[3] CUSICK M, ATKINSON J, BALKCUM A.X-band sheet beam klystron(XSBK)[C]//2009 IEEE International Vacuum Electronics Conference. Rome, Italy: IEEE, 2009: 296-297.
[4] NGUYEN K T, WRIGHT E L, PERSHING D E, et al.Broadband high-power 18-beam S-band klystron amplifier design[J]. IEEE Transactions on Electron Devices, 2009, 56(5): 883-890.
[5] ROITMAN A, SWEENEY D, MATHIESON P, et al.Compact high power Ka-band extended interaction klystron for terrestrial and space applications[C]//2006 IEEE International Vacuum Electronics Conference held Jointly with 2006 IEEE International Vacuum Electron Sources. Monterey, CA, USA: IEEE, 2006: 71-72.
[6] DOBBS R, HYTTINEN M, ROITMAN A.Current development programs for the satcom Ka-band EIK[C]//2006 IEEE International Vacuum Electronics Conference held Jointly with 2006 IEEE International Vacuum Electron Sources. Monterey, CA, USA: IEEE, 2006: 213-214.
[7] DURAND A J.PPM focused Ku band pulsed EIK[C]//2006 IEEE International Vacuum Electronics Conference held Jointly with 2006 IEEE International Vacuum Electron Sources. Monterey, CA, USA: IEEE, 2006: 73-74.
[8] 丁耀根. 大功率微波电真空器件的发展动向[J]. 真空电子技术,2006(3):37-40.
[9] DING Y G, SHEN B, SHI S M, et al.S-band multibeam klystron with bandwidth of 10%[J]. IEEE Transactions on Electron Devices, 2005,52(5):889-894.
[10] DING Y G, LIU P K, ZHANG Z, et al.Research and development of multi beam klystron in China[C]//2009 IEEE International Vacuum Electronics Conference. Rome, Italy: IEEE, 2009:49-52.
[11] 周碎明. 高次模式多注速调管[J]. 真空电子技术, 2008 (4):7-9.
[12] RICHARD D, ALBERT R, PETER H.Fabrication techniques for a THz EIK[C]//2010 IEEE International Vacuum Electronics. Monterey, CA, USA: IEEE,2010: 181-182.
[13] 丁耀根,刘濮鲲,张兆传,等. 大功率速调管的技术现状和研究进展[J]. 真空电子技术,2010(6):1-8.
[14] MIROSHNICHENKO A Y, CHERNYSHEV M A, TSAREV V A, et al.Investigation of the electrodynamic parameters of a three-gap multi-beam klystron resonator with planar strip conductors on a dielectric substrate[C]//2022 International Conference on Actual Problems of Electron Devices Engineering (APEDE). Saratov, Russian Federation: IEEE, 2022: 63-66.
[15] SOLYANIK V A, MIROSHNICHENKO A Y, TSAREV V A, et al.Investigation of the electrodynamic characteristics of a double-gap capacitively loaded resonator for a multibeam klystron[C] 2024 International Conference on Actual Problems of Electron Devices Engineering. Saratov, Russian Federation: IEEE, 2024: 69-72.
[16] 韦莹,盛兴,窦钺. 相对带宽11%的C波段宽带多注速调管[J]. 真空电子技术,2014(6):9-11.
[17] 顾红红,高冬平,薛明,等. C波段400kW 多注速调管的研制[C]//中国电子学会真空电子学分会第19届学术年会论文集. 2013:383-384.
[18] 左向华,万知之,崔萌,等. 反转永磁聚焦C波段高功率多注速调管[J]. 强激光与粒子束,2020,32(10):82-86.
[19] CHAO Q G, ZHANG R, WANG Y, et al.Modeling and design of a high-efficiency multibeam klystron[J]. IEEE Transactions on Electron Devices, 2022, 69(5): 2625-2630.
[20] LIN X, ZHANG R, WANG Y.Simulation design of high-frequency system of S-band multi-beam klystron[C]//2022 Cross Strait Radio Science & Wireless Technology Conference (CSRSWTC). Haidian, China: IEEE, 2022.
[21] FU H Q, ZHANG R, WANG Y.The preliminary design and calculation of compact P-band multi-beam klystron[C]// 2022 Cross Strait Radio Science & Wireless Technology Conference. Haidian, China: IEEE, 2022.
[22] DING Y G, GAO D P, SHEN B, et al.The Study on the uniformity of electric field distribution in the coaxial cavity output circuit of the multi-beam klystron[C]//2023 24th International Vacuum Electronics Conference (IVEC). Chengdu, China: IEEE, 2023.
[23] 李烨,李冬凤,杨璐旋,等. S波段反转永磁聚焦宽带大功率多注速调管的研制[J]. 真空电子技术,2019(2):43-47.
[24] 李烨,李冬凤,王子威,等. S波段小型化高峰值功率多注速调管提高效率的研究[J]. 真空电子技术,2023(3):8-12.
[25] 李冬凤,郑建一,苏爽,等. C波段30 kW高平均功率高次模式多注速调管[J]. 真空电子技术,2018(6):42-45.
[26] 丁耀根,大功率速调管的设计制造和应用[M]. 北京: 国防工业出舨社,2010.
[27] SAITO Y, MATUDA N, ANAMI S, et al.Breakdown of alumina RF windows[J]. Review of Scientific Instruments, 1989, 60(7): 1736-1739.
[28] 王盛昌. 650 MHz高效率多注速调管的研究[D]. 合肥:中国科学技术大学,2023.
[1] SONG Yan-peng, QIANG Bo, HAN Yong-chao, TANG Rong, ZHANG Ji-feng. Detection Method for Small Leaks of Missile-Borne Klystron [J]. VACUUM, 2022, 59(4): 18-21.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[4] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[5] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .
[6] XU Fa-jian, WANG Hai-lei, ZHAO Cai-xia, HUANG Zhi-ting. Application of chemical gases vacuum-compression recovery system in environmental engineering[J]. VACUUM, 2018, 55(5): 29 -33 .
[7] XIE Yuan-hua, HAN Jin, ZHANG Zhi-jun, XU Cheng-hai. Discussion on present situation and development trend of vacuum conveying[J]. VACUUM, 2018, 55(5): 34 -37 .
[8] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[9] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[10] CHANG Zhen-dong, MU Ren-de, HE Li-min, HUANG Guang-hong, LI Jian-ping. Reflectance spectroscopy study on TBCs prepared by EB-PVD[J]. VACUUM, 2018, 55(5): 46 -50 .