欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2020, Vol. 57 ›› Issue (1): 56-61.doi: 10.13385/j.cnki.vacuum.2020.01.11

Previous Articles     Next Articles

Simulated Experimental Study on Vacuum Life of Cryogenic Insulated Cylinders

LI Xiao-feng1, HUANG Qiang-hua2, CHEN Guang-qi1, HE Xiao-dong1, ZHU Ming2   

  1. 1.Zhangjiagang Furui Special Equipment Co., LTd, Zhangjiagang 215637, China;
    2.China Special Equipment Inspection And Research Institute, Beijing 100029, China
  • Received:2019-08-23 Online:2020-01-25 Published:2020-03-17

Abstract: The method of filling simulated gases into the vacuum interlayer of insulated cylinder is successively put forward to evaluate the vacuum life of insulated cylinder for leakage and material outgassing. The test result shows that the static evaporation rate of cryogenic insulated cylinder rises rapidly after the interlayer pressure is greater than 5×10-2Pa at low temperature, that is to say, 5×10-2Pa can be regarded as the inflection point (or threshold) of the interlayer vacuum life termination. 5A molecular sieve has great adsorption potential for nitrogen at liquid nitrogen temperature, however, with weak adsorption capacity for hydrogen. The effect of material outgassing on vacuum life of vacuum insulating sandwich is far greater than that of leakage. The technical way to improve vacuum life of insulating cylinder is to reduce the outgassing rate of sandwich material and improve the adsorption capacity of built-in adsorbent for hydrogen. This test can directly, practically and accurately study the influence of leakage and outgassing on vacuum life, provides reference data for determining practical design parameters and process, and then promotes the application and evaluation of vacuum life of various vacuum insulated cryogenic vessels.

Key words: cryogenic insulated cylinders, leakage rate, outgassing rate, vacuum life, adsorption isotherm

CLC Number: 

  • TB658
[1] 凌文, 刘玮, 李育磊, 等. 中国氢能基础设施产业发展战略研究[J]. 中国工程科学, 2019, 21(3):1-8.
[2] 郭志钒, 巨永林. 低温液氢储存的现状及存在问题[J]. 低温与超导, 2019, 47(6):21-29.
[3] Hastings L J, Hedayat A, Brown T M.Analytical modeling and test correlation of variable density multilayer insulation for cryogenic storage [R]. NASA-2004-213175, 2004.
[4] Martin J J, Hastings L.Large-scale liquid hydrogen testing of variable density multilayer insulation with a foam substrate [R]. NASATP-2013-217482, 2013.
[5] 王莹, 厉彦忠, 陈鹏玮, 等. 空间燃料储箱变密度多层绝热结构传热性能研究[J]. 低温工程, 2016(5):57-63.
[6] 王田刚, 李延娜, 姚淑婷, 等. 变密度多层绝热最优层密度研究[J]. 低温与超导, 2014(7):6-9.
[7] 吴崇阳. 逐层传热模型在高真空多层传热中的扩展应用分析[J]. 科学与信息化, 2018, 31:13-15.
[8] 毕龙生, 陈光奇. 多层绝热低温容器真空夹层中的残余气体质谱分析[J]. 真空科学与技术学报, 1987, 7(5):48-53+47.
[9] 孙冬花, 王荣宗, 陈光奇. 阻燃型低温绝热纸的出气速率和出气成分测试[J]. 真空与低温, 2007, 13(2):111-115.
[10] 陈联, 陈光奇, 温永刚, 等. 液氢铁路槽车内胆及真空夹层气体成份分析[C]. 第十四届全国质谱分析和检漏会议、第九届全国真空计量测试会论文汇编, 2008. 8. 1:166-169.
[11] 陈树军, 谭粤, 杨树斌. 低温绝热气瓶漏放气性能的研究[J]. 真空科学与技术学报, 2012, 32(5):90-94.
[12] 陈光奇, 毕龙生. 漏气对液氮容器使用寿命的影响[J]. 低温与特气, 1988(3):24-30.
[13] 汪荣顺, 吴剑林, 顾安忠. 6m3高真空多层绝热液氧容器真空性能[J]. 低温工程, 1999(4):142-146.
[14] 贾卫民, 金小群, 杨永华, 等. 集成式杜瓦组件真空寿命评测及影响因素分析[J]. 激光与红外, 2018(1):79-82.
[15] 李晓峰, 陈光奇, 白杨, 等. 分子筛在低压下的吸附特性试验研究[J]. 真空, 2019, 56(02):45-50.
[16] 全国锅炉压力容器标准化技术委员会移动式压力容器分技术委员会. NB/T47059-2017冷冻液化气体罐式集装箱[S]. 北京. 新华出版社.. 2018. 2.
[17] 李晓峰, 黄强华, 陈光奇, 等. 氢对低温容器真空寿命影响的模拟试验研究[J]. 低温工程, 2019, 231(5):64-69.
[1] LI Xiao-feng, CHEN Guang-qi, BAI Yang, REN Gai-hong. Experimental study on adsorption characteristics of molecular sieve under low temperature and low pressure [J]. VACUUM, 2019, 56(2): 45-49.
[2] LIU Xing-yue, WANG Zhen, DOU Ren-chao, CUI Yu-hao, YANG Ding-kui. Developed a method to test total leakage rate of spacecraft based on helium mass spectrometry of LEYBOLD [J]. VACUUM, 2019, 56(2): 62-65.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] LI Zhi-sheng. Development of ultra large shielded door for infrared calibration in simulated space environment[J]. VACUUM, 2018, 55(5): 66 -70 .
[4] ZHENG Lie, LI Hong. Design of 200kV/2mA continuous adjustable DC high voltage generator[J]. VACUUM, 2018, 55(6): 10 -13 .
[5] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[6] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[7] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[8] JI Ming, SUN Liang, YANG Min-bo. Design of automatic sealing and locking scheme for lunar sample[J]. VACUUM, 2018, 55(6): 24 -27 .
[9] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[10] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .