欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2020, Vol. 57 ›› Issue (4): 11-18.doi: 10.13385/j.cnki.vacuum.2020.04.03

• Thin Film • Previous Articles     Next Articles

Material Characteristics of Thin Films

ZHANG Shuang1, DONG Chuang1,2, MA Yan-ping2,3, DING Wan-yu1   

  1. 1. Engineering Research Center of Optoelectronic Materials and Devices, School of Materials Science and Engineering, Dalian Jiaotong University, Dalian 116028, China;
    2. Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Dalian University of Technology, Ministry of Education, Dalian 116024, China;
    3. State Key Laboratory of Marine Resource Utilization in South China Sea & Special Glass Key Laboratory of Hainan Province, School of Materials and Chemical Engineering, Hainan University, Haikou 570228, China
  • Received:2019-08-09 Online:2020-07-25 Published:2020-07-23

Abstract: There are a variety of PVD and CVD coating techniques using plasma and energetic beams. However, commonly used industrial coatings involve only a few materials, such as metal nitrides and amorphous carbon. To address such a phenomenon, this paper proposes three basic principles of thin film material selection, i.e., composition tolerance, structural stability and electrical conductivity. Three kinds of typical coating materials are then explained based on the principles, namely titanium nitride representative of solid solution materials, amorphous boride, and Cr-doped diamond-like carbon, stressing that the selection of thin film materials is derived from the balance between process characteristics and material performance, and is dominated by processability. It is pointed out that the material compositions must be precisely regulated to achieve the best matching of processability and performance, while material compositions are rooted in chemical short-range-order structures. By introducing the cluster-plus-glue-atom model developed by our research group, molecule-like local structural units and the corresponding composition formulas are constructed and they explain the compositions of thin film materials in use. The perspective of using this method as thin film composition design is envisaged.

Key words: thin films, composition design, titanium nitride, amorphous boride, metal-doped diamond-like carbon, cluster-plus-glue-atom model

CLC Number: 

  • TB43
[1] Venables J A.Introduction to Surface and Thin Film Processes [M]. Cambridge: Cambridge University Press, 2000.
[2] 徐滨士, 刘世参. 中国材料工程大典(第16卷)材料表面工程(上) [M]. 北京: 化学工业出版社, 2005.
[3] Sudarshan T S, 范玉殿. 表面改性技术(工程师指南) [M]. 北京: 清华大学出版社, 1992.
[4] 董闯, 董丹丹, 王清. 固溶体中的化学结构单元与合金成分设计[J]. 金属学报, 2018,54(2):293-300.
[5] Dong C, Wang Q, Qiang J B, et al.From clusters to phase diagrams: composition rules of quasicrystals and bulk metallic glasses[J]. Journal of Physics D: Applied Physics, 2007, 40(15): R273-R291.
[6] Oyama S T.The Chemistry of Transition Metal Carbides and Nitrides[M]. London: Blackie Academic & Professional, 1996.
[7] Cselle T, Barimani A. Today's applications and future developments of coatings for drills and rotating cutting tools[J]. Surf. Coat. Technol., 1995,76-77(2):712-718.
[8] Madaoui N, Saoula N, Zaid B, et al.Structural, mechanical and electrochemical comparison of TiN and TiCN coatings on XC48 steel substrates in NaCl 3.5% water solution[J]. Applied Surface Science, 2014,312:134-138.
[9] Sundgren J E, Johansson B O, Rockett A, et al.TiNx (0.6<x<1.2): Atomic arrangements, Electronic structure and recent results on crystal growth and physical properties of epitaxial layers[C]//AIP Conference Proceedings. American Institute of Physics, 1986, 149(1): 95-115.
[10] Lee Y K, Kim J Y, Lee Y K, et al.Surface chemistry of non-stoichiometric TiNx films grown on (1 0 0)Si substrate by DC reactive magnetron sputtering[J]. Journal of Crystal Growth, 2002,234:498-504.
[11] Massalski T B, Okamoto H, Subramanian P R, et al.Binary Alloy Phase Diagrams[M]. Second Edition Plus Updates ed. USA: ASM International, 1990.
[12] Ma Y, Dong D, Wu A, et al.Composition Formulas of Inorganic Compounds in Terms of Cluster Plus Glue Atom Model[J]. Inorg. Chem., 2018,57(2):710-717.
[13] O'hern M E, Parrish R H, Oliver W C. Evaluation of mechanical properties of TiN films by ultralow load indentation[J]. Thin Solid Films, 1989,181:357-363.
[14] Sue J A.Development of arc evaporation of non-stoichiometric titanium nitride coatings[J]. Surf. Coat. Technol., 1993, 61(1-3):115-120.
[15] Arnell R D, Colligon J S, Minnebaev K F, et al.The effect of nitrogen content on the structure and mechanical properties of TiN films produced by magnetron sputtering[J]. Vacuum, 1996,47(5):425-431.
[16] Han K, Lin G, Dong C, et al.Nitrogen concentration dependent mechanical properties of TiNx single-phase films(0.75≤x≤0.99)[J]. Ceram. Int., 2016,42(8): 10332-10337.
[17] 韩克昌. 电弧离子镀过渡金属氮化物硬质薄膜的成分设计基础研究 [D]. 大连: 大连理工大学, 2017.
[18] 郑学家. 硼化合物生产与应用 [M]. 北京: 化学工业出版社, 2007.
[19] Albert B, Hillebrecht H.Boron: elementary challenge for experimenters and theoreticians[J]. Angew. Chem. Int. Ed. Engl., 2009,48(46):8640-8668.
[20] Matkovich V I, Economy J.Structure of MgAlB14 and a brief critique of structural relationships in higher borides[J]. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 1970, B26: 616-621.
[21] Yan C, Zhou Z F, Chong Y M, et al.Synthesis and characterization of hard ternary AlMgB composite films prepared by sputter deposition[J]. Thin Solid Films, 2010,518(19):5372-5377.
[22] Wu Z, Bai Y, Qu W, et al.Al-Mg-B thin films prepared by magnetron sputtering[J]. Vacuum, 2010,85(4):541-545.
[23] Cook B A, Harringa J L, Lewis T L, et al.A new class of ultra-hard materials based on AlMgB14[J]. Scr. Mater., 2000,42:597-602.
[24] Yan C, Qian J C, Ng T W, et al.Sputter deposition of hard quaternary Al-Mg-B-Ti nanocomposite films[J]. Surf. Coat. Technol., 2013,232:535-540.
[25] Adasch V, Hess K U, Ludwig T, et al.Synthesis, crystal structure, and properties of two modifications of MgB12C2[J]. Chemistry, 2007,13(12):3450-3458.
[26] Jiang X, Zhao J, Wu A, et al.Mechanical and electronic properties of B12-based ternary crystals of orthorhombic phase[J]. Journal of Physics: Condensed Matter, 2010,22(31):315503.
[27] Wang Z R, Qiang J B, Wang Y M, et al.Composition design procedures of Ti-based bulk metallic glasses using the cluster-plus-glue-atom model[J]. Acta Materialia, 2016,111:366-376.
[28] Zhang S, Dong D, Wang Z, et al.Composition formulas of Ni-(Nb, Ta) bulk metallic glasses[J]. Intermetallics, 2017,85:176-179.
[29] Zhang S, Dong D, Wang Z, et al.Spherical periodicity as structural homology of crystalline and amorphous states[J]. Science China Materials, 2018,61(3):409-416.
[30] 张爽. 晶体相中的球周期共振结构 [D]. 大连: 大连理工大学, 2019.
[31] 罗灵杰. 团簇加连接原子模型的修正及其在金属玻璃和共晶合金成分解析中的应用 [D]. 大连: 大连理工大学, 2013.
[32] Dong D, Zhang S, Wang Z, et al.Composition interpretation of binary bulk metallic glasses via principal cluster definition[J]. Materials & Design, 2016, 96: 115-121.
[33] Luo L J, Chen H, Wang Y M, et al.24 electron cluster formulas as the ‘molecular’ units of ideal metallic glasses[J]. Philosophical Magazine, 2014,94(22):2520-2540.
[34] Xia J, Qiang J, Wang Y, et al.Ternary bulk metallic glasses formed by minor alloying of Cu8Zr5 icosahedron[J]. Appl. Phys. Lett., 2006,88(10):101907.
[35] 周徐洋. B-C-Mg非晶薄膜的成分设计、制备及表征 [D]. 大连:大连理工大学, 2014.
[36] Chen J X, Wang Q, Wang Y M, et al.Cluster formulae for alloy phases[J]. Philosophical Magazine Letters, 2010,90(9):683-688.
[37] Zhou X, Ma Y, Gong F, et al.Amorphous-based B-C-Mg thin films obtained through a composition design using cluster-plus-glue-atom model[J]. Surf. Coat. Technol., 2014, 242: 14-19.
[38] Han G, Qiang J, Li F, et al.The e/a values of ideal metallic glasses in relation to cluster formulae[J]. Acta Materialia, 2011,59(15):5917-5923.
[39] 隋志通, 隋升, 罗冬梅. 燃料电池及其应用[M]. 1版. 北京: 冶金工业出版社, 2004.
[40] Aisenberg S, Chabot R.Ion‐beam deposition of thin films of diamondlike carbon[J]. Journal of Applied Physics, 1971,42(7):2953-2958.
[41] Li X, Ke P, Wang A.Probing the Stress Reduction Mechanism of Diamond-Like Carbon Films by Incorporating Ti, Cr, or W Carbide-Forming Metals: Ab Initio Molecular Dynamics Simulation[J]. The Journal of Physical Chemistry C, 2015,119(11):6086-6093.
[42] Li X, Sun L, Guo P, et al.Structure and residual stress evolution of Ti/Al, Cr/Al or W/Al co-doped amorphous carbon nanocomposite films: Insights from ab initio calculations[J]. Materials & Design, 2016,89:1123-1129.
[43] Li X, Ke P, Wang A.Stress reduction of Cu-doped diamond-like carbon films from ab initio calculations[J]. AIP Advances, 2015,5(1):017111.
[44] 王同. 耐蚀导电掺铬类金刚石的团簇加连接原子模型及成分式 [D]. 大连: 大连理工大学, 2018.
[1] YAO Ting-ting, ZHONG Zhao-jin, LI Gang, TANG Yong-kang, YANG Yong, JIN Ke-wu, SHENG Hong-xue, WANG Tian-qi, PENG Saiao, JIN Liang-mao, SHEN Hong-lie, GAN Zhi-ping, MA Li-yun. Study on fabrication and properties of micro-nano structure AZO films by DC coupled RF sputtering [J]. VACUUM, 2018, 55(6): 64-67.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] LI Zhi-sheng. Development of ultra large shielded door for infrared calibration in simulated space environment[J]. VACUUM, 2018, 55(5): 66 -70 .
[4] ZHENG Lie, LI Hong. Design of 200kV/2mA continuous adjustable DC high voltage generator[J]. VACUUM, 2018, 55(6): 10 -13 .
[5] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[6] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[7] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[8] JI Ming, SUN Liang, YANG Min-bo. Design of automatic sealing and locking scheme for lunar sample[J]. VACUUM, 2018, 55(6): 24 -27 .
[9] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[10] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .