欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2022, Vol. 59 ›› Issue (3): 25-28.doi: 10.13385/j.cnki.vacuum.2022.03.06

• Vacuum Acquisition System • Previous Articles     Next Articles

Approximate Calculation Method of Decompression Time in Rapid Decompression Environment Simulation System

LI Zhuo-hui, LU Tong-shan, LIU Jia-lin, SUN Song-gang, DONG Dong, SHI Cheng-tian, LI Can-lun, ZHANG Rui   

  1. Shanghai Institute of Spacecraft Equipment, Shanghai 200240, China
  • Received:2021-08-11 Online:2022-05-25 Published:2022-06-01

Abstract: In order to predict the time of gas pressure drop in the rapid decompression environment simulation system, an approximate theoretical calculation model for rapid decompression was established based on the orifice outflow principle of hydrodynamics, and the numerical iterative calculation method was given. At the same time, the finite element simulation method was used to analyze the pressure balance process, and a set of test system was built. By comparing the results of the two methods with the experimental data, the correctness and feasibility of the calculation method are verified.

Key words: rapid decompression, numerical iteration, finite element simulation, environmental simulation system

CLC Number: 

  • V19
[1] 苏兴荣. 机载设备快速减压试验技术研究[J]. 环境技术, 2011, 33(2): 18-22.
[2] 崔致和, 曹军, 张正军. 航天器密封舱内压力平衡时间的计算与验证[J]. 真空, 2012, 49(2): 33-35.
[3] JAKUB T, BORIS O, PETR D, et al.Rare pulmonary barotrauma after explosive decompression: A case report[J]. BMC pulmonary medicine, 2020, 20(1): 291.
[4] PAGANI A, CARRER E.Gasdynamics of rapid and explosive decompressions of pressurized aircraft including active venting[J]. Advances in Aircraft and Spacecraft Science, 2016, 3(1): 77-93.
[5] LEE K J, SANOU A Z.Decompression sickness in the F/A-18C after atypical cabin pressure fluctuations[J]. Aerospace Medicine & Human Performance, 2018, 89(5): 478.
[6] BAI B, WANG J W, ZHOU Y.Numerical study of the effects of fluid conductance and the capacity of negatively pressured cabin to the process of explosive decompression[J]. IOP Conference Series Materials Science and Engineering, 2018, 449: 012019.
[7] CARRERA E, PAGANI A.Dynamic response analysis of pressurized cabins subjected to decompression loadings[J]. Transactions of the Linnean Society of London, 2015, 7(10): 521-538.
[8] 臧斌, 吴建兵, 肖华军, 等. 外军高空减压和缺氧体验训练装置应用分析[J]. 医疗卫生装备, 2011, 32(12): 131-132.
[9] 王忠明, 许永华, 黄泽阳, 等. 基于大型复合低压舱的模拟海拔高度系统研制[J]. 医疗卫生装备, 2011, 32(11): 12-13.
[10] 王军伟, 韩潇, 张磊, 等. 复用式毫秒级快速泄压真空机构及快速减压试验系统: 202011124207.1[P].2021-01-15.
[11] 王刘杰, 徐水红, 王东阳, 等. 航天爆炸减压舱的设计与实现[J]. 航天医学与医学工程, 2021, 34(2): 161-165.
[12] 陈海斌, 王正国, 杨志焕, 等. 适用于中,小动物的迅速减压舱的研制及其实验研究[J]. 爆炸与冲击, 1999, 19(4): 329-334.
[13] 孙兵, 肖华军, 袁修干. 座舱减压时间对应急供氧参数的影响[J]. 中国安全科学学报, 2002, 12(5): 44-50.
[14] 殷东辰, 肖华军, 臧斌, 等. 低压复合环境试验舱群研制[J]. 医疗卫生装备, 2011, 32(12): 6-8.
[15] 臧斌, 顾昭, 王桂友, 等. 低压舱气压弹放式迅速减压装置的研制[J]. 医疗卫生装备, 2017, 38(5): 18-21.
[16] 臧斌, 肖华军, 顾昭, 等. 低压舱氧气装备供氧参数测试系统的研制[J]. 医疗卫生装备, 2009, 30(1): 31-33.
[17] 陈叔平, 达道安, 陈光奇. 空间站两舱压力平衡时间分析[J]. 真空科学与技术学报, 2010, 30(3): 226-228.
[18] ROTH E M.Rapid(explosive)decompression emergencies in pressure-suited subjects[R]. National Aeronautics & Space Administration, 1968: 1-125.
[19] 高海朋, 刘猛, 王浚. 减压模拟设备迅速抽真空技术研究及实现[J]. 真空科学与技术学报, 2013, 33(12): 1191-1198.
[20] 范宇峰, 刘炳清, 黄家荣, 等. 气闸舱泄复压热力过程研究[J]. 宇航学报, 2013, 34(2): 293-298.
[21] 吉恒松, 王谦, 韩新月, 等. 热力学第一定律在充气过程求解中的应用[J]. 广州华工, 2013, 41(22): 165-167.
[1] WANG Jun-wei, GONG Jie, DING Wen-jing, XU Jing-hao, GU Miao, ZHANG Li-ming. Numerical Simulation and Analysis of Spatial Rapid Decompression Process Based on Dynamic Grid [J]. VACUUM, 2022, 59(2): 32-37.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] LI Zhi-sheng. Development of ultra large shielded door for infrared calibration in simulated space environment[J]. VACUUM, 2018, 55(5): 66 -70 .
[4] ZHENG Lie, LI Hong. Design of 200kV/2mA continuous adjustable DC high voltage generator[J]. VACUUM, 2018, 55(6): 10 -13 .
[5] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[6] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[7] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[8] JI Ming, SUN Liang, YANG Min-bo. Design of automatic sealing and locking scheme for lunar sample[J]. VACUUM, 2018, 55(6): 24 -27 .
[9] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[10] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .