欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2022, Vol. 59 ›› Issue (3): 68-73.doi: 10.13385/j.cnki.vacuum.2022.03.14

• Measurement and Control • Previous Articles     Next Articles

Preliminary Results of Mass Spectrometry Measurements for HL-2M Tokamak

ZHOU Jun, CAO Zeng, CAO Cheng-zhi, HUANG Xiang-mei, GAO Xiao-yan, HU Yi   

  1. Southwestern Institute of Physics, Chengdu 610041
  • Received:2021-05-21 Online:2022-05-25 Published:2022-06-01

Abstract: A quadrupole mass spectrometer was used to measure and analyze the residual gas in the vacuum vessel of HL-2M in the process of baking and glow discharge cleaning(GDC), and the pumping performance of the cryopumps for H2O in the pumping system was studied. After baking with a maximum temperature of 100℃,the partial pressure of 18(H2O) and 28(CO) were reduced by 47.96% and 17.63%, respectively. The ion current of 18(H2O), 28(CO) and 32(O2) during the GDC went down remarkably. And the product of the GDC was exhausted by the pumping system, which effectively reduced impurities such as carbon and oxygen. The partial pressure of 18(H2O) and 28(CO) were reduced by 3.2×10-5Pa and 3.7×10-6Pa, respectively, with four cryopump operation and the steady state vacuum. Mass spectrometry measurement and analytical results provide useful supports for the initial plasma discharge of the HL-2M tokamak.

Key words: HL-2M tokamak, mass spectrometry measurement, mass charge ratio, residual gas analysis

CLC Number: 

  • TL62+8
[1] HONG S H, KIM K P Kim, KIM S W, et al. Initial phase wall conditioning in KSTAR[J]. Nuclear Fusion, 2011, 51(10): 103027(15pp).
[2] 刘德权, 曹曾, 周才品, 等. HL-2A托卡马克真空系统烘烤试验[J]. 真空, 2003, 2: 31-34.
[3] 颉延风, 田培红, 唐芳群, 等. HL-2A托卡马克真空烘烤除气性能研究[J]. 真空, 2015, 52(1): 48-52.
[4] 毕海林, 胡建生, 余耀伟, 等. HT-7托卡马克全金属壁及锂化条件下辉光放电清洗的研究[J]. 真空科学与技术学报, 2014, 34(7): 731-736.
[5] 李加宏, 胡建生, 王小明, 等. EAST超导托卡马克装置真空室壁处理的研究[J]. 物理学报, 2012, 61(20): 205203.
[6] ANTIPENKOV A B, LADD P, MARRS R. ITER glow discharge cleaning system[J]. Fusion Engineering and Design, 2001, 56-57: 233-238.
[7] 黄向玫, 曹曾, 许正华, 等. 高分辨四极质谱计在HL-2A装置上的应用[J]. 真空科学与技术学报, 2013, 33(7): 632-637.
[8] 曹曾, 黄向玫, 蔡潇, 等. 质谱测量与分析系统的性能测试[J]. 核聚变与等离子体物理, 2014, 34(2): 135-140.
[9] 黄向玫, 曹曾, 蔡潇, 等. 四极质谱计的氦氘分辨性能实验[J]. 核聚变与等离子体物理, 2012, 32(2): 177-182.
[10] 成永军, 李得天, 张涤新, 等. 极高真空校准室内残余气体的成分分析[J]. 真空科学与技术学报, 2010, 30(1): 54-59.
[11] FRATTOLILLO A, NINNO A D. A powerful tool to quantitatively detect tiny amounts of 4He in a deuterium rich background for fusion research[A].2007 IEEE 22nd Symposium on Fusion Engineering, 2007, pp: 1-4.
[12] JEYAN S, THOMAS J, Hogan, Stephen Taylor, Phillip Turner, Christopher Knott. A Quadrupole Mass spectrometer for resolution of low mass isotopes[J]. American Society for Mass Spectrometry, 2010, 21: 1364-1370.
[13] KLEPPER C C, HILLS D L, BUCALOSSI J, et al.Residual gas analysis for long-pulse, Advanced Tokamak Operation[J]. Review of Scientific Instruments, 2010, 81: 10E104.
[14] YU Y Wei, HU J S, ZHAO W et al.Mass separation of deuterium and helium with conventional quadrupole mass spectrometer by using varied ionization energy[J]. Review of Scientific Instruments, 2016, 87(3): 035120.
[15] 赵墨田, 曹永明, 陈刚, 等.无机质谱概论[M]. 北京: 化学工业出版社, 2006.
[16] 冉红, 曹曾, 蔡立君, 等. HL-2M装置真空室设计与分析[J]. 核聚变与等离子体物理, 2014, 34(3): 219-223.
[17] 蔡潇, 曹曾, 张炜, 等. HL-2M 装置真空室预抽气系统的研制[J]. 真空, 2021, 58(1): 33-37.
[18] 朱毓坤. 核真空科学技术[M]. 北京: 原子能出版社, 2010.
[19] 罗世敏. 一种四极质谱残余气体分析的实用方法[J]. 真空, 1989, 4: 28-35.
[20] 达道安. 真空手册[M]. 达道安. 真空设计手册(第三版)[M]. 北京: 国防工业出版社, 2004: 847.
[21] 窦仁超, 陈长琦, 胡建生, 等. 四极质谱计在超导托卡马克装置上的应用[J]. 真空科学与技术学报, 2016, 36(12): 1394-1399.
[22] 黄天斌, 陈旭, 金奇计, 等. 辉光放电清洗效果的质谱分析[J]. 真空, 2005, 42(5): 29-31.
[23] ZIAUDDIN K, GEORGE S J, PRATIBHA S, et al.Conditioning of SST-1 tokamak vacuum vessel by baking and glow discharge cleaning[J]. Fusion Engineering and Design, 2016, 103: 69-73.
[1] LIU Shun-ming, SONG Hong, DONG Hai-yi, GUAN Yu-hui, LIU Sheng-hua. Applications of quadrupole mass spectrometer in drift tube linear accelerator [J]. VACUUM, 2018, 55(6): 5-9.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] LI Zhi-sheng. Development of ultra large shielded door for infrared calibration in simulated space environment[J]. VACUUM, 2018, 55(5): 66 -70 .
[4] ZHENG Lie, LI Hong. Design of 200kV/2mA continuous adjustable DC high voltage generator[J]. VACUUM, 2018, 55(6): 10 -13 .
[5] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[6] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[7] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[8] JI Ming, SUN Liang, YANG Min-bo. Design of automatic sealing and locking scheme for lunar sample[J]. VACUUM, 2018, 55(6): 24 -27 .
[9] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[10] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .