欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2023, Vol. 60 ›› Issue (1): 13-16.doi: 10.13385/j.cnki.vacuum.2023.01.02

• Thin Film • Previous Articles     Next Articles

Measurement and Analysis of Light Transmittance and Shielding Coefficient of All Inorganic Solid-state Electrochromic Window

FENG Gang1,2, MENG Zheng1,2,3, YANG Xue-dong4, ZHANG Hao-yun4, YU Gang1,3, GAO Hui1, WANG Wei-cai1, SONG Meng1, SUN Yong1,3, KONG Zhuang1,3, JIA Jin-sheng1, WANG Hong1,3   

  1. 1. State Key Laboratory of Green Building Materials, China Building Materials Academy, Beijing 100024, China;
    2. Shandong Key Laboratory of Inorganic Functional Materials and Intelligent Manufacturing, CNBM Technology Innovation Academy, Zaozhuang 277100, China;
    3. Beijing Key Laboratory of Solar Energy and Building Energy-saving Glass Materials Processing Technology, Beijing 100024, China;
    4. China Building Material Test & Certification Group, Beijing 100024, China
  • Received:2021-12-29 Online:2023-01-25 Published:2023-02-07

Abstract: In order to make better use of the properties of active spectrum control of electrochromic glass and provide theoretical support for the application of electrochromic glass in architecture, the sealed insulating glass unit was taken as an example to discuss the changes of visible light transmittance and shielding coefficient(energy saving effect). It is found that in order to obtain a larger visible light transmittance difference(bleach state minus color state), the key point is to improve the transmittance of electrochromic glass. However, compared with the electrochromic glass with higher cost, it is more realistic to improve the transmittance of Low-E glass.In order to give full play to the energy-saving characteristics of electrochromic glass, the electrochromic glass was placed on the outdoor side and indoor side of insulating glass respectively for testing. The results show that when the electrochromic glass is located on the outdoor side, the change of shielding coefficient is the largest(0.46), which is more suitable for a variety of scenarios. At the same time, the better performance of electrochromic glass film is required.

Key words: electrochromic glass, bleach state, color state, visible light transmittance, shielding coefficient, insulating glass, Low-E glass

CLC Number: 

  • TQ171
[1] O′BRIEN N A, GORDON J, MATHEW H, et al. Electrochromic coatings-applications and manufacturing issues[J]. Thin Solid Films, 1999, 345(2): 312-318.
[2] LEE E S, DIBARTOLOMEO D.Application issues for large-area electrochromic windows in commercial buildings[J]. Solar Energy Materials and Solar Cells, 2002, 71(4): 465-491.
[3] 林改. 全固态电致变色智能窗[J]. 玻璃, 2015, 42(3): 3-7.
[4] 殷顺湖, 徐键, 洪樟连. 灵巧窗电致变色复合薄膜材料、器件及应用[J]. 材料导报, 1995, 70(5): 69-70.
[5] 王晓光, 江月山, 杨乃恒, 等. 固态电致变色薄膜器件的发展现状[J]. 真空, 1996(4): 6-12.
[6] GRANQVIST C G.Handbook of inorganic electrochromic materials[M]. Elsevier, 1995: 6-15.
[7] 张翔, 李文杰, 李垚, 等. 无机全固态电致变色器件研究进展[J]. 材料科学与工艺, 2020, 28(3): 140-149.
[8] 代强, 刘静, 汪洪. 反应磁控溅射氧化钨电致变色薄膜结构与性能[J]. 硅酸盐学报, 2018, 46(7): 978-986.
[9] 孟政, 刘静, 汪洪. 固态全无机电致变色器件透过光谱计算与测试[J]. 真空科学与技术学报, 2018, 38(7): 633-635.
[10] HUANG Q, DONG G, XIAO Y, et al.Electrochemical studies of silicon nitride electron blocking layer for all-solid-state inorganic electrochromic device[J]. Electrochimica Acta, 2017, 252: 331-337.
[11] LIU Q, DONG G, CHEN Q, et al.Charge-transfer kinetics and cyclic properties of inorganic all-solid-state electrochromic device with remarkably improved optical memory[J]. Solar Energy Materials and Solar Cells, 2018, 174: 545-553.
[12] LIU Q, CHEN Q, ZHANG Q, et al.Dynamic behaviors of inorganic all-solid-state electrochromic device: Role of potential[J]. Electrochimica Acta, 2018, 269: 617-623.
[13] DONG D, WANG W, ALINE R, et al.Life-cycling and uncovering cation-trapping evidence of a monolithic inorganic electrochromic device: Glass/ITO/WO3/LiTaO3/ NiO/ITO[J]. Nanoscale, 2018, 10(35): 16521-16530.
[14] DONG D, WANG W, ALINE R, et al.Lithium trapping as a degradation mechanism of the electrochromic properties of all-solid-state WO3//NiO devices[J]. Journal of Materials Chemistry C, 2018, 6: 9875-9889.
[15] WANG S C, LIU K Y, HUANG J L.Tantalum oxide film prepared by reactive magnetron sputtering deposition for all-solid-state electrochromic device[J]. Thin Solid Films, 2011, 520(5): 1454-1459.
[16] 夏翥杰, 张治国, 王红莉, 等. WO3薄膜制备及其电致变色性能研究[J]. 真空, 2020, 57(2): 47-52.
[17] 魏梦瑶, 王辉, 韩文芳, 等. 中频磁控溅射制备氧化钨薄膜及电致变色性能研究[J]. 真空, 2021, 58(5): 50-56.
[18] 代强, 刘静, 孟政, 等. 钛掺杂氧化钨薄膜结构与电致变色性能研究[J]. 真空, 2018, 55(2): 14-18.
[19] DONG D M, WANG W W, BARNABÉ A, et al.Enhanced electrochromism in short wavelengths for NiO:(Li, Mg)films in full inorganic device ITO/NiO:(Li, Mg)/ Ta2O5/WO3/ITO[J]. Electrochimica Acta, 2018, 263: 277-285.
[20] 全国建筑用玻璃标准化技术委员会. 建筑玻璃可见光透射比, 太阳光直接透射比, 太阳能总透射比, 紫外线透射比及有关窗玻璃参数的测定: GB/T 2680-2021[S]. 北京: 中国标准出版社, 2021: 130-131.
[1] CHEN Hai-feng, LIN Le-zhong. Design of Chamber C1 for Low-E Glass Coating Line [J]. VACUUM, 2019, 56(5): 47-51.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] LI Zhi-sheng. Development of ultra large shielded door for infrared calibration in simulated space environment[J]. VACUUM, 2018, 55(5): 66 -70 .
[4] ZHENG Lie, LI Hong. Design of 200kV/2mA continuous adjustable DC high voltage generator[J]. VACUUM, 2018, 55(6): 10 -13 .
[5] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[6] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[7] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[8] JI Ming, SUN Liang, YANG Min-bo. Design of automatic sealing and locking scheme for lunar sample[J]. VACUUM, 2018, 55(6): 24 -27 .
[9] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[10] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .