欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2023, Vol. 60 ›› Issue (1): 36-41.doi: 10.13385/j.cnki.vacuum.2023.01.06

• Vacuum Acquisition System • Previous Articles     Next Articles

Design and Machining of Circular Rotor Profiles for Roots Vacuum Pumps

LI Zheng-qing, WANG Xiao-jun, HAN Xian-hu, CAI Yu-hong, LI Xiao-jin, YANG Jian-bin   

  1. Lanzhou Institute of Physics, Lanzhou 730000, China
  • Received:2022-05-03 Online:2023-01-25 Published:2023-02-07

Abstract: Study of the rotor profile of Roots pump is a core part of Roots pump design, and the circular arc rotor profile is one of the widely used for Roots pump. In the design of circular rotor profile, the theoretical rotor profile is designed based on conjugate properties firstly. Then the actual profile and casting blank profile of the rotor are obtained based on the theoretical profile. In this paper, the actual profile and casting blank profile design method based on the rotor circular arc line is proposed on conjugate properties to greatly simplify the analysis and design process. Finally, the circular arc rotor profile and its rough machining and finishing methods are designed for a 70L/s Roots pump.

Key words: Roots vacuum pump, circular arc, conjugate, actual profile, cast profile

CLC Number: 

  • TB752
[1] 姜燮昌. 粗真空、中真空获得设备的最新进展与应用[J]. 真空, 2017, 54(3): 1-6.
[2] 叶仲和, 林守峰, 魏彪. 三叶罗茨鼓风机圆弧型转子型线设计[J]. 风机技术, 2000(4): 9-12.
[3] 董笑飚, 张仑. 罗茨鼓风机圆弧型转子型线方程[J]. 甘肃工业大学学报, 2000, 26(4): 43-47.
[4] 刘林林, 初嘉鹏, 胡建中. 罗茨真空泵转子型线的研究[J]. 机械设计, 2007, 24(3): 64-67.
[5] 叶喜伦, 王颖. 罗茨泵转子实际型线公式的推导与计算[J]. 真空, 1989(5): 49-54.
[6] 彭学院, 何志龙, 束鹏程. 罗茨鼓风机渐开线型转子型线的改进设计[J]. 风机技术, 2000(3): 3-5.
[7] 王晓虎, 俞玲华, 张宝夫, 等. 适用于气冷式直排大气罗茨泵的一种转子型线[J]. 真空, 2005, 42(5): 10-12.
[8] 李海洋, 赵玉刚, 胡柳, 等. 渐开线型罗茨真空泵转子型线的改进研究[J]. 机床与液压, 2011, 39(22): 37-39.
[9] 李玉龙. 罗茨泵用高能渐开线新型转子的型线研究[J]. 机床与液压, 2020, 48(4): 64-66.
[10] HWANG Y W, HSIEH C F.Study on high volumetric efficiency of the Roots rotor profile with variable trochoid ratio[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2016, 220(9): 1375-1384.
[11] WANG J, LIU R Q, YANG S R, et al.Geometric study and simulation of an elliptical rotor profile for Roots vacuum pumps[J]. Vacuum, 2018, 153: 168-175.
[12] 张伟初, 吴明亮, 李新华, 等. 三叶罗茨鼓风机宽凸台渐开线叶型设计[J]. 湖南农业大学学报, 2002, 28(2): 165-166.
[13] 翟云飞, 张世伟, 韩峰, 等. 三叶转子罗茨真空泵内气体过程的热力学计算[J]. 真空, 2019, 56(3): 10-15.
[14] 黄思, 康文明, 陈首挺, 等. 基于CFD的罗茨真空泵的瞬态流场计算与性能预测[J]. 重庆理工大学学报(自然科学版), 2019, 33(2): 62-66.
[15] KANG Y H, VU H H.A newly developed rotor profile for lobe pumps: generation and numerical performance assessment[J]. Journal of Mechanical Science and Technology, 2014, 28(3): 915-926.
[16] NGUYEN T, TUYEN B N, TRAN V T.Analyzing rotor profile′s effects to performance of roots vacuum pump applied the CFD method[J]. Applied Mechanics and Materials, 2019, 889: 518-525.
[17] 张铁柱, 张洪信, 赵红. 非接触式转子泵转子理论型线与实际型线设计[J]. 机械工程学报, 2002, 38(11): 152-155.
[18] 吴序堂. 齿轮啮合原理[M]. 北京: 机械工业出版社, 1982.
[19] 李正清, 李小金, 杨建斌, 等. 罗茨真空泵偏心大圆弧转子型线设计及分析[J/OL]. 真空与低温, 2022. https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CAPJ&dbname=CAPJLAST&filename=ZKDW20220217002&uniplatform=NZKPT&v=iHLW1m41r6W9giY_HL8SIWQ3jLv2UMfBOwe
LXLmGl76vxcvlSB65QQV6ycrmZV-n.
[20] 杨乃恒. 真空获得设备[M]. 北京: 冶金工业出版社, 1999.
[21] 牛祥永, 巫修海. 罗茨泵转子数控铣削加工工艺研究[J]. 机械制造, 2012, 50(2): 65-66.
[1] ZHANG Bao-fu, YU Yang, GAO Xun-yi, LI Jin-jian, WANG Jian-guo, WANG Ling-ling. Application of High Differential Pressure Roots Pump Combination Pumping System for Large Vacuum Distillation Deep Cut Unit [J]. VACUUM, 2022, 59(5): 45-49.
[2] ZHANG Shi-wei, GAO Lei-ming, LI Run-da, MAN Yong-kui, DU Yuan-peng, WANG Bo, XU Zu-jin. Comparative Study on Pumping Characteristics of the Roots Vacuum Unit in Start-up Process [J]. VACUUM, 2022, 59(1): 1-6.
[3] ZHAI Yun-fei, ZHANG Shi-wei, HAN Feng, ZHAO Fan, XIE Yuan-hua. Thermodynamic calculation for pumping process in the trilobal Roots vacuum pump [J]. VACUUM, 2019, 56(3): 10-15.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] LI Zhi-sheng. Development of ultra large shielded door for infrared calibration in simulated space environment[J]. VACUUM, 2018, 55(5): 66 -70 .
[4] ZHENG Lie, LI Hong. Design of 200kV/2mA continuous adjustable DC high voltage generator[J]. VACUUM, 2018, 55(6): 10 -13 .
[5] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[6] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[7] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[8] JI Ming, SUN Liang, YANG Min-bo. Design of automatic sealing and locking scheme for lunar sample[J]. VACUUM, 2018, 55(6): 24 -27 .
[9] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[10] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .