欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2024, Vol. 61 ›› Issue (4): 75-79.doi: 10.13385/j.cnki.vacuum.2024.04.14

• Measurement and Control • Previous Articles     Next Articles

Research of Leakage Properties for Aerostat Envelope Welding Area

ZHU Shan-zhang, DONG Li   

  1. 38th Research Institute of CETC, Hefei 230088, China
  • Received:2023-11-25 Online:2024-07-25 Published:2024-07-29

Abstract: In actual use, the helium leakage of the aerostat is much larger than the theoretical value, which greatly affects the standing performance of the aerostat. In this paper, the mechanism of helium leakage at the envelope welding area was discussed based on the errors between the calculated and actual helium leakage values. Helium permeability tests in the envelope welding area were conducted, and improvement ideas and methods were proposed. Aiming at the design of the long-endurance aerostat, the forming technology of the low helium aerostat capsule was optimized by studying the influence of different structural forms and technological methods of the envelope welding on the helium leakage rate. The results show that optimizing the structural form and processing methods of the airship envelope, such as applying protective outer heat-sealing strips on the outside of the envelope heat-sealing seams, or using heat-sealing processes as much as possible, the barrier and shape retention capabilities of the envelope can be effectively improved, and the standing time of the aerostat can be increased.

Key words: aerostat, long endurance, envelope welding technology, leakage rate test

CLC Number:  TQ014

[1] 宛宁, 栗颖思, 周书宇, 等. 现代浮空器军事应用[J]. 科技导报, 2017, 35(15): 20-27.
[2] KRAUSMAN J, MILLER D.The 12M tethered aerostat system: rapid tactical deployment for surveillance missions[C]//22nd AIAA Lighter-Than-Air Systems Technology Conference. Dallas, TX, 2015.
[3] 邓小龙, 麻震宇, 罗晓英. 国外系留气球装备发展与应用启示[J]. 飞航导弹, 2020(6): 76-82.
[4] 田越, 肖尚明. 平流层飞艇囊体材料的发展现状及关键技术[J]. 合成纤维, 2013, 42(4): 11-15.
[5] 秦利宇, 戴秋敏. 平流层浮空器的现状和技术趋势[J]. 科技创新与应用, 2020(1): 156-157.
[6] 袁明清, 赵海涛, 陈政, 等. 温度对平流层飞艇囊体材料渗漏性能的影响[J]. 装备环境工程, 2020, 17(1):6-12.
[7] ZHAI Y T, SHEN Y Z, YAN X B, et al.Methods of configuration test and deformation analysis for large airship[J]. Journal of Systems Engineering and Electronics. 2022, 33(4): 951-960.
[8] 董莉. 浮空器囊体材料耐候层常用Tedlar薄膜的研究[J].山东化工, 2022, 51(18): 4-6.
[9] 高晓枫. 浮空器蒙皮材料制备与应用技术发展研究[J]. 湖南工业职业技术学院学报, 2019, 19(2): 6-9.
[10] 安兵辉,王昆仑. 浮空器渗氦率随升空高度变化分析[J]. 黑龙江科技信息, 2017(7): 115.
[11] 刘东旭, 樊彦斌, 马云鹏, 等. 氦气渗透对高空长航时浮空器驻空能力影响[J]. 宇航学报, 2010, 31(11):2477-2482.
[12] 赵臻璐, 王小群, 杜善义. 平流层飞艇囊体气密层材料及氦气透过聚合物研究现状[J]. 航空学报, 2009, 30(9): 1761-1768.
[13] 姜允中. 包装膜的气体渗透机理与各种测试方法的分析比较[J]. 塑料包装, 2004, 14(3): 46-48.
[14] 马寅佶, 吴清, 姚学锋, 等. 柔性蒙皮材料氦气渗透的细观机制[J]. 清华大学学报(自然科学版), 2011, 51(5): 646-650.
[15] 朱仁胜, 张月, 周隐. 恒温条件下浮空气囊泄漏仿真[J]. 机械设计与制造, 2018(2): 91-93.
[16] 刘帅, 朱仁胜, 张金奎, 等. 浮空器蒙皮材料老化后透氦率实验研究[J]. 装备环境工程, 2018, 15(7): 25-28.
[17] 曾凡阳, 朱仁胜, 张月, 等. 基于等效差压法的浮空器泄漏检测方法研究[J]. 合肥工业大学学报(自然科学版), 2018, 41(4): 451-456.
[18] 彭光正, 李振平. 直压法进行泄漏检测的研究[J]. 液压与气动, 2006(6): 50-52.
[19] 李天骐, 潘雁频, 陈联, 等. 温度对平流层飞艇蒙皮渗透的影响研究[J]. 真空与低温, 2014(2): 120-124.
[20] 童靖宇, 向树红. 临近空间环境及环境实验[J]. 装备环境工程, 2012, 9(3): 1-4.
[21] YOKOZEKI T, OGASAWARA T, ISHIKAWA T.Evaluation of gas leakage through composite laminates with multilayer matrix cracks: cracking angle effects[J]. Composites Science and Technology, 2006,66(15): 2815-2824.
[1] DONG Li. The Gas Tightness Study of Aerostat Envelope Material [J]. VACUUM, 2024, 61(2): 68-72.
[2] LIU Xing-yue, WANG Zhen, DOU Ren-chao, CUI Yu-hao, YANG Ding-kui. Developed a method to test total leakage rate of spacecraft based on helium mass spectrometry of LEYBOLD [J]. VACUUM, 2019, 56(2): 62-65.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[4] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[5] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .
[6] XU Fa-jian, WANG Hai-lei, ZHAO Cai-xia, HUANG Zhi-ting. Application of chemical gases vacuum-compression recovery system in environmental engineering[J]. VACUUM, 2018, 55(5): 29 -33 .
[7] XIE Yuan-hua, HAN Jin, ZHANG Zhi-jun, XU Cheng-hai. Discussion on present situation and development trend of vacuum conveying[J]. VACUUM, 2018, 55(5): 34 -37 .
[8] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[9] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[10] CHANG Zhen-dong, MU Ren-de, HE Li-min, HUANG Guang-hong, LI Jian-ping. Reflectance spectroscopy study on TBCs prepared by EB-PVD[J]. VACUUM, 2018, 55(5): 46 -50 .