欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2025, Vol. 62 ›› Issue (6): 54-61.doi: 10.13385/j.cnki.vacuum.2025.06.08

• Measurement and Control • Previous Articles     Next Articles

Analysis of Insulation Characteristics of 145 kV Fluorine-Free Environmentally Friendly Circuit Breaker Based on Vacuum Breaking

CHAI Ziyuan1, WANG Wenbo1, WEI Jianwei1, CHAI Yinghui1, GAO Zhenkui2, SHI Chunling2, ZHANG Qinwei3   

  1. 1. Pinggao Group Co., Ltd., Pingdingshan 467000, China;
    2. Henan Pingzhi High Voltage Switchgear Co., Ltd., Pingdingshan 467013, China;
    3. School of Electrical and Information Engineering, Zhengzhou University , Zhengzhou 450001, China
  • Received:2024-11-18 Online:2025-11-25 Published:2025-11-27

Abstract: Finding environmentally friendly alternatives to SF6 circuit breakers is an urgent issue in the field of high-voltage switchgear. This article proposes a design concept and overall plan for a fluorine free environmentally friendly circuit breaker using dry air as the insulating gas. A numerical simulation model of 145 kV fluorine free environmentally friendly circuit breaker was established using 3D design software, and numerical simulatlon software was used for simulation analysis to obtain the electric field distribution of key parts of the circuit breaker's external insulation. The research results show that the electric field strength of the outgoing conductor supported by the three-phase dynamic and static ends of the circuit breaker is the highest under different working conditions. By optimizing the structure of the dynamic and static end supports and the connection parts of the conductor, the maximum electric field strength of the external insulation structure of the circuit breaker was reduced by 34.40%, which provides a theoretical basis for the development of 145 kV fluorine free environmentally friendly circuit breakers.

Key words: fluorine free environmentally friendly circuit breaker, dry air, electric field analysis, structural optimization

CLC Number:  TM561

[1] 孙田星. 真空断路器在光伏发电系统中的瞬态响应分析[J].真空, 2016,53(5):55-57.
[2] 贾申利,贾荣照,朱璐.真空开断型环保GIS发展现状及趋势[J].高压电器,2022,58(9):1-12.
[3] 钟建英,陈刚,谭盛武,等.高压开关设备关键技术及发展趋势[J].高电压技术,2021,47(8):2769-2782.
[4] SIDDIQUI N, WEEKS C, ROGERS J.Advancements in clean air insulation technologies for switchgear and circuit breakers[J]. IEEE Power and Energy Magazine, 2022, 20(2): 132-138.
[5] 艾绍贵,余晓,黄永宁,等.气体绝缘363kV快速真空断路器电场分析[J].重庆大学学报,2018,41(10):61-68.
[6] 李烁,修士新,贾申利,等.金属罐体对真空灭弧室内部电场分布的影响[J].高电压技术, 2024,50(2):570-578.
[7] 钟建英,孙广雷,杨葆鑫,等.高电压等级真空断路器研究现状及展望[J].高电压技术,2024,50(2):451-466.
[8] 程显,杜帅,葛国伟,等.环保型罐式多断口真空断路器均压配置研究[J].电工技术学报, 2021,36(15):3154-3162.
[9] 董增波,杨鹏,范辉,等.基于NSGA-Ⅱ的真空断路器灭弧室静态绝缘优化设计与分析[J].真空科学与技术学报,2021,41(12):1198-1202.
[10] 杨敬华,范承勇.40.5kV真空断路器绝缘结构电场分析及优化设计[J].电网技术,2011,35(12):146-152.
[11] 田宇,许家源,王永兴,等.配126kV单断口选相真空断路器长行程磁力机构设计及性能试验[J].电网技术,2020,44(11):4445-4453.
[12] 姚灿江,孙龙勇,刘英英.新型72.5 kV真空断路器的研发设计[J].高压电器,2023,59(2):23-30.
[13] 董华军,孙鹏,李东恒,等.12 kV真空灭弧室触头电动斥力计算与结构优化[J].高电压技术,2022,48(9):3602-3611.
[14] 齐大翠,薛从军,李小钊,等.72.5 kV真空灭弧室绝缘水平提升技术研究[J].广东电力,2021,34(10):89-94.
[15] 柴子元,王文博,魏建巍,等.海上风电用环保型断路器绝缘特性分析及优化设计[J].河南科学,2024,42(7):960-967.
[16] NAKANO Y, SURGES B, HINRICHSEN V.Increasing the internal field strength of vacuum interrupters with vapor shield potential control[J]. IEEE Transactions on Power Delivery, 2018, 33(6): 3155-3161.
[17] HEINZ T, HELBIG D, TEICHMANN J, et al.145 kV vacuum circuit breaker and clean air instrument transformer-performance, installation-and operational experience[C]//VDE High Voltage Technology 2018. Berlin, Germany:VDE, 2018.
[18] GIERE S, HELBIG D, KOLETZKO M, et al.Vacuum interrupter unit for CO2-neutral 170kV/50kA switchgear[C]//VDE High Voltage Technology 2018. Berlin, Germany:VDE, 2018.
[19] AGATA Y, KIKUCHI N.Development of 145 kV dry air insulated dead tank vacuum circuit-breaker (VCB)[J]. Meiden Review: International Edition, 2022 (186): 31-35.
[20] TIAN Y, XU J, DENG Y, et al.Development and tests of ZW-126/D2000-40 vacuum circuit breakers with controlled switching technology[J]. CSEE Journal of Power and Energy Systems, 2022, 8(1): 249-257.
[21] KOJIMA H, DONEN T, KIMURA T, et al.Diagnosis of discharge pattern in vacuum interrupter by shield potential measurement[C]//2020 8th International Conference on Condition Monitoring and Diagnosis (CMD).Phuket, Thailand:IEEE,2020.
[22] 吴兴林,鲁旭臣,李爽,等.72.5kV真空环保型HGIS的可行性研究[J].东北电力技术,2014,35(10):27-29.
[23] KATO K, KANEKO S, OKABE S, et al.Optimization technique for electrical insulation design of vacuum interrupters[J]. IEEE Trans Dielectr Electr Insul, 2008, 15(5): 1456-1463.
[24] DAI L H.Multi-objective optimization design of vacuum interrupter structure based on improved artificial jellyfish search algorithm[J]. IEEJ Transactions on Electrical and Electronic Engineering, 2023, 18(11): 1806-1814.
[25] 黄永宁,余晓,樊益平,等. 363 kV多断口快速真空断路器电场仿真分析[J].高压电器,2019,55(10):19-24.
[26] 马爱清,潘三博.基于ANSYS的126kV三相共罐式GIS断路器电场分析[J].上海电力学院学报,2011,27(3):224-228.
[27] 程显,韩书谟,何周,等. 40.5kV环保型气体绝缘开关柜气室结构设计[J].高电压技术,2015,41(8):2772-2779.
[28] HAMA H, OKABE S, BUHLER R, et al.Dry air, N2, CO2 and N2/SF6 mixtures for gas-insulated system[R].Electra, 2018.
[29] 金硕,郭世瑞,杨宇晨,等.直流电压下盆式绝缘子表面电荷对沿面闪络的影响[J].高电压技术,2024,51(3):1180-1190.
[30] 程显,李鑫,葛国伟,等.串联用一体化自均压真空灭弧室绝缘配置与优化[J].高电压技术,2022,48(3):820-828.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[4] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[5] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .
[6] XU Fa-jian, WANG Hai-lei, ZHAO Cai-xia, HUANG Zhi-ting. Application of chemical gases vacuum-compression recovery system in environmental engineering[J]. VACUUM, 2018, 55(5): 29 -33 .
[7] XIE Yuan-hua, HAN Jin, ZHANG Zhi-jun, XU Cheng-hai. Discussion on present situation and development trend of vacuum conveying[J]. VACUUM, 2018, 55(5): 34 -37 .
[8] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[9] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[10] CHANG Zhen-dong, MU Ren-de, HE Li-min, HUANG Guang-hong, LI Jian-ping. Reflectance spectroscopy study on TBCs prepared by EB-PVD[J]. VACUUM, 2018, 55(5): 46 -50 .