欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2025, Vol. 62 ›› Issue (6): 88-99.doi: 10.13385/j.cnki.vacuum.2025.06.12

• Vacuum Metallurgy and Thermal Engineering • Previous Articles     Next Articles

Research on the Design of Vacuum Furnace Heating Elements

JING Laixing, LI Jianchang   

  1. Vacuum and Fluid Engineering Research Center, School of Mechanical Engineering & Automation, Northeastern University, Shenyang 110819, China
  • Received:2024-11-15 Online:2025-11-25 Published:2025-11-27

Abstract: Vacuum furnace heating element plays a crucial role in determining the temperature uniformity, heating efficiency, workpiece quality and energy consumption, which is the most important focus in the furnace design and research. This article reviews the domestic and international literature progress of heating elements, including materials and shapes, power specifications, power connection methods, dimensions and quantities selection, and installation layouts / configurations. Firstly, the material type, shape, applicable atmosphere and vacuum degree for heating elements are summarized. Secondly, the selection of power voltage and connection method is analyzed, and the applicable situations of seven empirical methods for power calculation are compared. Finally, to enhance the temperature uniformity and service life, the heating element size and installation layouts for different types of furnace are summarized. To meet the requirements of vacuum furnace for precise temperature control, energy saving and consumption reduction, future efforts should be made on the modularized structure design of heating elements, the research and development of novel corrosion-resistant and anti-oxidation coatings, along with the integration of high-precision sensors and intelligent algorithms. It can thus realize automatic monitoring and optimal control of heating element temperature.

Key words: vacuum furnace, heating element, temperature uniformity of furnace, graphite heating element, surface loading method

CLC Number:  TK175

[1] 袁坤, 刘志明, 陈思明. SiO生产过程反应容器与加热元件材质选择[J]. 矿冶, 2023, 32(6): 75-81.
[2] 王占举, 张贤根, 王建卫. 石墨加热器结构设计分析[J]. 科学技术创新, 2018,(10): 183-184.
[3] PRITCHARD J.Hot-zone design for vacuum furnaces[J]. Industrial Heating, 2007, 71(9): 95-99.
[4] 康虹. ZSD-50型高真空钽烧结炉的研制[J]. 真空, 1996, 33(4): 44-47.
[5] 熊梨, 张登春, 宋石初, 等. 碳化硅真空烧结炉温度场数值模拟与系统优化[J]. 金属热处理, 2022, 47(6): 259-265.
[6] 王昊杰,李勇,王昭东,等. 真空渗碳炉加热室温度场数值模拟与分析[J]. 热加工工艺,2016,45(24):172-176.
[7] 解永强. 高温真空炉用金属加热元件的防变形设计[D]. 西安:西安电子科技大学, 2016.
[8] 秦岭,李强,王璐,等. 气氛烧结炉温度场的仿真研究[J]. 工业加热,2017,46(4):61-66.
[9] 李光田. 贵金属焙烧回转窑电加热元件的改进[J]. 电世界,2018,59(8):29-31.
[10] 陈龙豪,钱虞清,金磊,等. 浅论非SiC类的非金属材料加热器[J]. 电子工业专用设备,2020,49(5):50-55.
[11] 凌云. 硬质合金真空烧结炉电发热体的设计与计算[J]. 湖南冶金职业技术学院学报, 2003(4): 336-338.
[12] 朱俊卿. 真空电阻炉加热元件的设计要点[C]//天津市电机工程学会2012年学术年会论文集. 天津:天津市电机工程学会, 2012: 187-192.
[13] 雷晏国. 电热合金加热元件在工业炉上的应用研究[J]. 陶瓷,2020(5):54-56.
[14] 王化海. 二硅化钼电热元件的安装与使用[J]. 电世界, 1994, 35(6): 20.
[15] 李抚龙, 杨巨龙, 高伟. 铝镍钴高温真空烧结炉的研制[J]. 真空, 1998, 35(5): 42-44.
[16] 赵雨涛,康慧,曲平. 真空钎焊炉加热体的数值模拟[J]. 工业加热,2008,37(1):33-37.
[17] 罗平,蔡永明,顾国宝,等. 多晶硅氢化炉热场部件革新[J]. 云南冶金,2016,45(4):51-54.
[18] 王超会,刘剑虹,顾晓华,等. 镍铬电阻丝与铬酸镧元件双加热系统高温电阻炉研究[J]. 中国陶瓷,2011,47(2):54-56.
[19] 王秉铨. 工业炉设计手册[M]. 3版. 北京: 机械工业出版社, 2010.
[20] 叶清健,冯颖璋. 铁铬铝合金电热元件的设计与计算[J]. 广东机械学院学报,1996(1):31-40.
[21] 翟宝隆. 电热辐射管在真空回火炉上的应用[J]. 航天工艺, 1995(5): 46-47.
[22] 马强. 三工位片式钽电容器真空预烧炉的研制[J]. 真空, 2001, 38(5): 33-36.
[23] 陈雷,徐涛,付启桐,等. 基于多物理场的电加热装置加热丝结构研究[J]. 实验室研究与探索,2023,42(1):99-104.
[24] 陈先咏. RJZS-24-16型真空烧结炉研制[J]. 工业加热, 2002, 31(1): 24-26.
[25] 武声阳. 氢气钼丝电阻炉设计制造及使用[J]. 工业加热, 2017, 46(1): 59-61.
[26] 马强. 2200 ℃片式钽电容器真空烧结炉的研制[J]. 真空, 2006, 43(3): 42-44.
[27] 李官俊, 孙鸿阁. ZR-100-20真空电阻炉钨片加热体的制造[J]. 工业加热, 2001, 30(1): 51-53.
[28] 高亚杰, 解永蓉, 张延宾, 等. 超高真空加热炉的研制[J]. 真空, 2015, 52(5): 58-60.
[29] 丁丁, 张磊, 李峰, 等. 热镀锌炉内加热器用碳化硅电热元件的电热特性测试[J]. 工业炉, 2017, 39(5): 7-10.
[30] HUR J U, JUNG H K, GYE S A, et al.Manufacture of rapid SiC heating element and increased durability through glass frit coating[J]. Journal of Ceramic Processing Research, 2020, 21(2): 213-216.
[31] 王振军, 谢庆云, 麻建军, 等. 一种氮气氛硅碳棒加热的真空电炉设计与维护[J]. 工业炉, 2021, 43(5): 41-44.
[32] 李国恩. 电炉的长寿命加热元件[J]. 建材工业信息, 1984(14): 11.
[33] VATULIN I I, MIKLUSHEVSKII V V, MINKOV O B, et al.Vacuum electrothermal equipment: achievements and prospects[J]. Metallurgist, 2011, 55: 59-66.
[34] 张会兵, 刘加善, 王红磊, 等. SiC电热元件用高温防氧化涂料的研制[J]. 工业加热, 2004, 33(6): 63-64.
[35] 张淑蓉. 石墨加热元件在真空炉中的应用研究[J]. 工业加热, 2012, 41(0): 66-68.
[36] 关奎之, 李云奇. 真空烧结炉结构的探讨[J]. 真空与低温, 1996(4): 45-47.
[37] 李军鹏,李世平,王振亚,等. 电路参数对石墨加热元件发热特性的影响规律研究[J]. 航空工程进展,2024,15(1):176-181.
[38] 李强,王璐. 基于ANSYS的气氛烧结炉动态温度场研究[J]. 信息技术与网络安全,2018,37(7):102-106.
[39] 董玉顺, 李恩平. 高密封性真空淬火炉加热室[J]. 铸锻热, 1997 (4): 27-30.
[40] 张延宾, 郑侠. 钽条高温真空烧结炉的研制[J]. 工业加热, 2018, 47(1): 31-33.
[41] WANG Y, CHEN Z, YU S, et al.Dense SiC coatings as barrier layer on graphite heat elements in furnaces for smelting silicon in photovoltaic industry[J]. International Journal of Applied Ceramic Technology, 2016, 13(3): 451-458.
[42] 于明. 立式真空钎焊炉设计[J]. 工业加热, 2009, 38(3): 67-70.
[43] 付桂珍, 王培堂, 于振华. RYL—200真空热压炉的设计和应用[J]. 工业加热, 1996, 25(6): 26-28.
[44] 彭平. 大型真空铝钎焊装备--主要技术参数及热工程序设计与控制[J]. 真空科学与技术学报,2004,24(6):475-480.
[45] 窦丹. 管式真空提纯炉的结构设计及节能研究[D].西安: 陕西科技大学, 2013.
[46] 杨勇,涂昌银,陈志,等. ZSJ-1600℃型钨合金真空烧结炉故障处理[J]. 设备管理与维修,2013(9):68.
[47] 王亚辉,张子龙,赵平建,等. 金刚石制品电炉加热系统设计与功率分析[J]. 工业炉,2016,38(4):40-43.
[48] 郭珈旭. G13Cr4Mo4Ni4V轴承套圈真空热处理过程温度场分析[D]. 哈尔滨:哈尔滨工业大学, 2020.
[49] 达道安. 真空设计手册[M]. 北京: 国防工业出版社, 1991.
[50] 高雪梅. 真空电阻炉中的金属加热体[J]. 工业加热, 2005, 27(4): 37-39.
[51] 周有臣, 戴芳, 刘文英. WZ型系列真空铝钎焊炉的研制[J]. 金属热处理,2002,27(11):38-41.
[52] 柏文言, 李雪. 箱式工业电阻炉加热的多流制牵引供电系统稳压方法[J]. 工业加热, 2023, 52(5): 72-76.
[53] LI M, MITRASINOVIC A, UTIGARD T, et al.Silicon rod heat generation and current distribution[J]. Journal of Crystal Growth, 2009, 312(1), 141-145.
[54] 周扬民. 西门子还原炉内传热及硅棒热电行为研究[D]. 昆明:昆明理工大学, 2018.
[55] RRID R C, PRAUSNITZ J M, POLING B E.The properties of gases and liquids[M]. New York: McGraw Hill, 1987.
[56] YARYMBASH D S, OLEINIKOV A M.On specific features of modeling electromagnetic field in the connection area of side busbar packages to graphitization furnace current leads[J]. Russian Electrical Engineering, 2015, 86(2): 86-92.
[57] 桑国春. 实验室高温炉加热元件的设计选型[J]. 化工管理,2017(2):21.
[58] 庞江瑞, 黄家海, 权龙. 基于ANSYSWorkbench的铸锭炉加热体的热-电耦合分析[J]. 铸造技术, 2016, 37(7): 1485-1487.
[59] 王亚辉, 曲长立, 侯冉, 等. 大型工业电炉功率计算分析及软件设计[J]. 成组技术与生产现代化, 2016, 33(3): 33-36.
[60] 柯兆龄. 多功能真空烧结炉[J]. 湖南冶金, 1989(3): 28-29.
[61] 王同, 陆文林, 李勍, 等. 热氢处理炉真空加热温度场数值模拟与分析[J]. 金属热处理,2021,46(2):209-212.
[62] 孙鹏. 多晶硅还原炉流场、温度场数值模拟及能耗分析[D]. 武汉:华中科技大学, 2012.
[63] 杨松,周磊,刘洋,等. 基于Fluent烧结钕铁硼真空烧结炉温度场模拟分析[J]. 金属功能材料,2023,30(5):38-42.
[64] 姚建功. 计算机在真空炉设计方面的应用[J]. 工业炉,2005,27(1):36-38.
[65] 张啸鹏. 基于建模仿真的真空烧结炉温度场研究与结构参数优化[D]. 广州:广东工业大学, 2021.
[66] 刘静,李家栋,王昊杰,等. 真空渗碳炉加热系统结构优化数值模拟研究[J]. 东北大学学报(自然科学版),2019,40(5):641-646.
[67] 马越. 多晶硅还原炉内温度场模拟[D]. 北京:中国矿业大学, 2019.
[68] COSO G D.Chemical decomposition of silanes for the production of solar grade silicon [D]. Spain: Universidad Politechica de Madrid, 2010.
[69] 严世权,叶芸华.我国改良西门子法多晶硅生产技术进展[J].上海有色金属,2010,31(4):167-170.
[70] DEL COSO G, DEL CANIZO C, LUQUE A.Radiative energy loss in a polysilicon CVD reactor[J]. Solar Energy Materials and Solar Cells, 2011, 95(4): 1042-1049.
[71] DEL COSO G, DEL CANIZO C, LUQUE A.Chemical vapor deposition model of polysilicon in a trichlorosilane and hydrogen system[J]. Journal of The Electrochemical Society, 2008, 155(6): 485-491.
[72] 邓苹. 电炉的设计-电炉加热元件的介绍[J]. 中国陶瓷,2003,39(4):33-34.
[73] WANG Y F, ZHEN L.Development of numerical modeling and temperature controller optimization for internal heating vacuum furnace[J]. IEEE Access, 2021, 9: 126765-126773.
[74] BALINNANG J, MOLLER C, SOMARY G, et al.高性能MIM真空烧结炉的主要特性和组件[J]. 粉末冶金技术, 2013, 31(6): 469-472.
[75] 蒲晨忠. 超长箱式电阻炉温度控制系统的研究[D]. 宜宾:四川轻化工大学, 2021.
[76] 薛钦, 刘颖, 张贤根, 等. SiO2真空烧结炉的温区均匀性分析[J]. 冶金管理, 2019(17): 10.
[77] LI B, SU F Y, LI C W, et al.Study on temperature uniformity of workpieces in multi-layer trays inside vacuum sintering furnace for cemented carbide[J]. International Journal of Thermal Sciences, 2024, 196: 108728.
[78] 崔佳娜. 我国硬质合金烧结设备的发展[J]. 中国钨业,2009,24(6):47-49.
[79] 曹晓明,温鸣,刘亚青. 耐熔锌腐蚀材料及热镀锌内加热技术[J]. 中国机械工程,2002,13(19):1642-1645.
[80] 张敏,商立英,张钧波,等. 管状电加热器升温特性的数值计算[J]. 中国科技论文在线,2008(8):566-569.
[1] TANG Rong, GUAN Jie, LU Shaobo, LI Runxia, HAN Yongchao. Development and Temperature Uniformity Measurement of Large Metal Sealed Vacuum Furnace [J]. VACUUM, 2025, 62(3): 84-88.
[2] WU Ai-rong, ZHANG Feng, MA Qiang, XI Xiao-jing. Design of Control System for Multi Chamber Tunnel Continuous Vacuum Sintering Furnace and Heat Treatment Furnace [J]. VACUUM, 2021, 58(1): 78-81.
[3] LONG Guo-liang, WANG Zhi-rong, HU Hao, ZHANG Feng. Discussion on Cooling-Reversing System of Vacuum Furnace [J]. VACUUM, 2020, 57(4): 24-27.
[4] WANG Zhi-rong, MA Qiang, LONG Guo-liang, LI Xue-feng, LIU Cheng. Development and Application of Multi-Chamber Tunnel Continuous Vacuum Sintering Furnace and Heat Treatment Furnace [J]. VACUUM, 2019, 56(5): 6-11.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[4] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[5] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .
[6] XU Fa-jian, WANG Hai-lei, ZHAO Cai-xia, HUANG Zhi-ting. Application of chemical gases vacuum-compression recovery system in environmental engineering[J]. VACUUM, 2018, 55(5): 29 -33 .
[7] XIE Yuan-hua, HAN Jin, ZHANG Zhi-jun, XU Cheng-hai. Discussion on present situation and development trend of vacuum conveying[J]. VACUUM, 2018, 55(5): 34 -37 .
[8] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[9] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[10] CHANG Zhen-dong, MU Ren-de, HE Li-min, HUANG Guang-hong, LI Jian-ping. Reflectance spectroscopy study on TBCs prepared by EB-PVD[J]. VACUUM, 2018, 55(5): 46 -50 .