欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2025, Vol. 62 ›› Issue (3): 84-88.doi: 10.13385/j.cnki.vacuum.2025.03.15

• Measurement and Control • Previous Articles     Next Articles

Development and Temperature Uniformity Measurement of Large Metal Sealed Vacuum Furnace

TANG Rong, GUAN Jie, LU Shaobo, LI Runxia, HAN Yongchao   

  1. Beijing Vacuum Electronic Technology Co., Ltd., Beijing 100015, China
  • Received:2024-05-16 Online:2025-05-25 Published:2025-05-23

Abstract: As the core device of communication equipment, vacuum electronic devices play a vital role in the fields of national defense advanced technology and space communication. In recent years, with the rapid development of new technologies such as terahertz, higher requirements has been put forward for the performance of vacuum electronic devices, and it is urgent to replace, which has prompted the growing demand for process equipment with high index, high reliability and long life. As one of the key equipment in this kind of processes, the ultra-high vacuum (UHV) furnace can perform heat treatment and brazing in a clean and high vacuum environment to achieve material degassing, purification and permanent connection. Its core performance is mainly reflected in the acquisition of high ultimate vacuum degree, uniform distribution of temperature in the furnace and reliability under high temperature conditions. In this paper, large metal sealed flange UHV furnace is designed for the development of high index, high reliability vacuum furnace products, and the intelligent processing and automatic production of the whole process is achieved.

Key words: metal seal, vacuum furnace, UHV, temperature uniformity

CLC Number:  TB79

[1] 张健,邓贤进,王成,等. 太赫兹高速无线通信:体制、技术与验证系统[J]. 太赫兹科学与电子信息学报,2014,12(1):1-13.
[2] 孙洁,易建琼. 太赫兹无线通信系统技术专利分析[J]. 中国科技信息, 2022(24):22-26.
[3] 成永东,李明光. 中型真空炉的技术升级[J]. 真空电子技术,2005(3):46-48.
[4] SONG H J,NAGATSUMA T.Present and future of terahertz communications[J]. IEEE Transactions on Terahertz Science and Technology, 2011,1(1):256-263.
[5] KLEINE-OSTMANN T, NAGATSUMA T.A review on terahertz communications research[J]. Journal of Infrared, Millimeter, and Terahertz Waves,2011,32(2):143-171.
[6] 卢少波,韩永超,宋艳鹏,等. 用于核电元件制造的深井式真空钎焊设备设计[J]. 真空,2023,60(3):72-75.
[7] 鲍国华. 不锈钢手术器械真空钎焊与热处理复合工艺的应用[J]. 热处理, 2013(6):44-47.
[8] 袁尔铭. 辉光放电钎焊的材料适应性研究[J]. 科技情报开发与经济, 2001,11(5):72-73.
[9] 张帅,王小霞,罗积润,等.烧结处理对微波真空电子器件电镀镍层性能的影响[J].电镀与涂饰,2020,39(19):1344-1347.
[10] 王智荣,马强,龙国梁,等. 多室隧道连续式真空烧结炉及热处理炉的研制与应用[J]. 真空, 2019,56(5):6-11.
[11] 姚彩虹,蒋兴加. 真空炉PLC控制系统的设计[J].工业加热,2005,34(4):63-66.
[12] 王炜维,展望. 浅论真空炉节能环保自动化控制[J].装备制造技术, 2008(3):109-111.
[13] 唐宏波,郭华锋,郝嘉欣. 一种“一体两机”式立式真空炉结构设计[J]. 装备制造技术, 2018(3):67-69.
[14] 张晓兵, 周丽,莎宵梅. 超洁净真空技术研究的思考与建议[C]//中国真空学会. 中国真空学会2014学术年会论文摘要集,2024:35-36.
[15] 卢少波,姚铮,宋艳鹏,等. 空间行波管专用排气工艺极高真空系统的研制[J]. 真空, 2022,59(5):50-54.
[16] 全国真空技术标准化技术委员会. 超高真空法兰:GB/T 6071-2003[S]. 北京:中国标准出版社, 2003.
[17] 全国真空技术标准化技术委员会. 真空技术可烘烤法兰刀口法兰尺寸:GB/Z 25756-2010 [S]. 北京:中国标准出版社, 2010.
[18] 全国真空技术标准化技术委员会. 铜丝密封可烘烤真空法兰:JB 5278.2-1991[S]. 北京:机械工业出版社, 1991.
[19] 凌桂龙,蔡国飙,张建华. 基于真空羽流试验的洁净真空系统设计[J]. 航空动力学报,2013,28(5):1173-1179.
[20] 达道安. 真空设计手册[M]. 3版.北京:国防工业出版社,2004.
[21] 卢少波,王承章,张吉峰. 低温泵在超高真空炉中的应用实例[J]. 真空科学与技术学报, 2017,37(2):141-145.
[22] 刘顺明,关玉慧,黄涛,等. CSNS直线加速器真空系统及四极质谱检漏[J]. 真空与低温, 2019,25(5):348-354.
[23] 张顺凤,程建平,巩瀛洲. 高精度真空钎焊炉焊接6061机载计算机机箱[J].真空, 2009,46(1):6-8.
[24] 文丽松,张道平. 内置式真空炉炉温均匀性检测系统[J].工业计量, 2014(3):68-71.
[1] CHEN Bolong, LI Zhongren, WANG Ying, WU Yifei, SU Ning, SONG Jiaxing, CHE Enlin, LIU Jun. Study on Temperature Uniformity of Heat Treatment System for Large Superconducting Coils [J]. VACUUM, 2025, 62(3): 33-37.
[2] LU Shao-bo, HAN Yong-chao, SONG Yan-peng, ZHANG Ji-feng. Design of Deep Well Vacuum Brazing Equipment for Nuclear Power Components Manufacturing [J]. VACUUM, 2023, 60(3): 72-75.
[3] XIE Yong-qiang, JIN Li-yan, YANG Xiao-dong, WANG Cheng-jun, XIA Dan, SU Chun. Finite Elements Analysis and Optimal Design for the Temperature Field of Vacuum Brazing Furnace [J]. VACUUM, 2021, 58(4): 58-62.
[4] WU Ai-rong, ZHANG Feng, MA Qiang, XI Xiao-jing. Design of Control System for Multi Chamber Tunnel Continuous Vacuum Sintering Furnace and Heat Treatment Furnace [J]. VACUUM, 2021, 58(1): 78-81.
[5] LONG Guo-liang, WANG Zhi-rong, HU Hao, ZHANG Feng. Discussion on Cooling-Reversing System of Vacuum Furnace [J]. VACUUM, 2020, 57(4): 24-27.
[6] WANG Zhi-rong, MA Qiang, LONG Guo-liang, LI Xue-feng, LIU Cheng. Development and Application of Multi-Chamber Tunnel Continuous Vacuum Sintering Furnace and Heat Treatment Furnace [J]. VACUUM, 2019, 56(5): 6-11.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!