欢迎访问沈阳真空杂志社 Email Alert    RSS服务

真空 ›› 2021, Vol. 58 ›› Issue (5): 77-79.doi: 10.13385/j.cnki.vacuum.2021.05.13

• 测量与控制 • 上一篇    下一篇

基于硅基氮化硅波导的外腔激光器研究*

陈家荣1, 王东辰2, 彭麦菊1   

  1. 1.贵州民族大学材料科学与工程学院,贵州 贵阳 550025;
    2.南京电子器件研究院,江苏 南京 210016
  • 收稿日期:2021-01-22 出版日期:2021-09-25 发布日期:2021-09-23
  • 作者简介:陈家荣(1981-),女,贵州瓮安人,博士,副教授。
  • 基金资助:
    *贵州省科技厅基础研究项目([2018]1084); 贵州省教育厅青年人才成长项目([2016]155); 贵州民族大学校级项目([2018]577-YB17); 国家自然科学基金项目(62064001)

Research on Silicon-Based Tunable External-Cavity Laser

CHEN Jia-rong, WANG Dong-chen, PENG Mai-ju   

  1. 1. School of Materials Science and Engineering, Guizhou Min Zu University, Guiyang 550025, China;
    2. Nanjing Electronic Devices Institute, Nanjing 210016, China.
  • Received:2021-01-22 Online:2021-09-25 Published:2021-09-23

摘要: 本论文展示了一种可调谐硅基外腔激光器,调谐范围在C波段(1540~1560nm),该激光器使用端面直接耦合(edge coupling)方式将SOA(Semiconductor Optical Amplifier)与硅基Si3N4波导集成。通过设计硅基Si3N4波导微环结构行成激光器外腔,激光器边模抑制比(side-mode suppression,SMSR)可达64dB。使用热调方式对微环进行等效折射率调节,实现了激光器粗调(coarse tune)与精调(fine tune)相结合,调节精度可达0.04nm。

关键词: 外腔激光器, Si3N4波导, 半导体光放大器, 边模抑制

Abstract: In this paper, a silicon-based tunable external cavity laser with tuning range of 1540~1560nm was presented. The laser integrates SOA(Semiconductor Optical Amplifier)with silicon-based Si3N4 waveguide by edge coupling. The SMSR(side-mode suppression)of laser can reach 64dB by designing silicon-based Si3N4 waveguide micro-ring structure. The thermal tuning method is used to adjust the effective refractive index of the micro-ring. The combination of coarse tune and fine tune is realized. The adjustment accuracy can reach to 0.04nm.

Key words: external cavity laser, Si3N4 waveguide, semiconductor optical amplifier, side-mode suppression

中图分类号: 

  • TN256
[1] VLASOV Y A, MCNAB S J.Losses in single-mode silicon-on-insulator strip waveguides and bends[J]. Opt. Express, 2004, 12(8): 1622-1631.
[2] LUO L W, OPHIR N, CHEN C P, et al.WDM-compatible mode-division multiplexing on a silicon chip[J]. Nat.Commun, 2014, 5(1): 3069.
[3] PARK H, SYSAK MN, CHEN H.Device and integration technology for silicon photonic transmitters[J]. J.Sel.Top.Quantum Electron, 2011, 17(3): 671-688.
[4] ROELKENS G, BROUCKAERT J, VAN THOURHOUT D, et al.Adhesive bonding of InP/InGaAsP dies to processed silicon-on-insulator wafers using DVS-bis-benzocyclobutene[J]. Journal of The Electrochemical Society, 2006, 153(12): 1015-1019.
[5] BOGAERTS W, BAETS R.Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology[J].J.Lightwave Technol, 2005, 23(1): 401-412.
[6] NORMAN J C, JUNG D, ZHANG Z, et al.A Review of high performance quantum dot lasers on silicon[J]. J Quantum Electrron., 2019, 55(2): 1321-1327.
[7] CHEN S, LI W, WU J.et al.Electrically pumped continuous-wave III-V quantum dot lasers on silicon[J].Nat.Photonics, 2016, 10(5): 307-311.
[8] LIU A Y, ZHANG C, NORMAN J, et al.High performance continuous wave 1.3μm quantum dot lasers on silicon[J]. Appl.Phys.Lett., 2014, 104(4): 041104.
[9] MAGDEN E S, LI N, PURNAWIRMAN J D B, et al. Monolithically-integrated distributed feedback laser compatible with CMOS processing[J]. Opt.Express, 2017, 25(15): 18058-18065.
[10] HULME J C, DOYLEND J K, BOWERS J E.Widely tunable Vernier ring laser on hybrid silicon[J]. Opt.Express, 2013, 21(17): 19718-19722.
[11] CREAZZO T, MARCHENA E, KRASULICK S B, et al.Integrated tunable CMOS laser[J]. Opt.Express, 2013, 21(23): 28048-28053.
[12] DUAN G H, JANY C, L E LIEPVRE A, et al. Hybrid III-V on silicon lasers for photonic integrated circuits on silicon[J]. J.Sel.Top.Quantum Electron., 2014, 20(4): 6100213.
[13] CHU T, FUJIOKA N, ISHIZAKA M.Compact, lower-power-consumption wavelength tunable laser fabricated with silicon photonic-wire waveguide micro-ring resonators[J]. Opt.Express, 2009, 17(16): 14063-14068.
[14] ZILKIE AJ, SEDDIGHIAN P, BIJLANI B J, et al.Power-efficient III-V/silicon external cavity DBR lasers[J]. Opt.Express, 2012, 20(21): 23456-23462.
[15] TANAKA S, JEONG S H, SEKIGUCHI S, et al.High-output-power,single wavelength silicon hybrid laser using precise flip-chip bonding technology[J]. Opt.Express, 2012, 20(27): 28057-28069.
[16] LIU Y, DING R, MA Y, et al.Silicon Mod-MUX-Ring transmitter with 4 channels at 40 Gb/s[J]. Opt.Express, 2014, 22(13): 16431-16438.
[17] YARIV A.Universal relations for coupling of optical power between microresonators and dielectric waveguides[J]. Electron.Lett., 2000, 36(4): 321-322.
[18] BOGAERTS W, DE HEYN P, VAERENBERGH T V, et al.Silicon microring resonators[J]. Laser Photonics Rev., 2012, 6(1): 47-73.
[19] ZHUANG L, MARPAUNG D, BURLA M, et al.Low-loss, high-index-contrast Si3N4/SiO2 optical waveguides for optical delay lines in microwave photonics signal processing[J]. Opt.Express, 2011, 19(23): 23162-23170.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!