欢迎访问沈阳真空杂志社 Email Alert    RSS服务

真空 ›› 2021, Vol. 58 ›› Issue (5): 104-109.doi: 10.13385/j.cnki.vacuum.2021.05.19

• 真空冶金与热工 • 上一篇    下一篇

大功率真空电子束冷床熔炼炉拉锭机构振动仿真分析

马强, 孙足来, 张哲魁, 牟鑫, 李建军, 王秋博   

  1. 沈阳真空技术研究所有限公司,辽宁 沈阳 110042
  • 收稿日期:2020-12-03 出版日期:2021-09-25 发布日期:2021-09-23
  • 通讯作者: 孙足来,教授级高工。
  • 作者简介:马强(1992-),男,辽宁省沈阳市人,硕士。

Vibration Simulation Analysis of Ingot Withdrawing Mechanism of Large Power Vacuum Cold Hearth Furnace

MA Qiang, SUN Zu-lai, ZHANG Zhe-kui, MU Xin, LI Jian-jun, WANG Qiu-bo   

  1. Shenyang Vacuum Technology Institute Co. , Ltd. , Shenyang 110042, China
  • Received:2020-12-03 Online:2021-09-25 Published:2021-09-23

摘要: 拉锭装置是真空电子束熔炼炉的核心部件之一,其运动的模式及速度对拉锭工作的稳定性及铸锭的组织结构有明显影响。一定的振动对铸锭的表面质量及晶粒细化程度有改善作用。在振动冲击下,结构将产生附加变形影响位移监测,相关零部件的强度也需要校核。在前期开发阶段,本文结合简化模型的理论分析与真实物理模型的仿真分析,对拉锭机构连接台三维模型的振动特性进行研究,分析了位移传感器的振动位移放大效应,提出优化方案降低测量误差,并分工况对结构强度进行校核,可为后续相关结构设计提供参考。

关键词: 真空熔炼炉, 拉锭, 振动, 仿真分析

Abstract: The ingot withdrawing device is one of the core components for the vacuum electron beam melting furnace, and its motion mode and speed have a significant effect on the stability of the withdrawing process and the structure of the ingot. Certain vibration can improve the surface quality and grain refinement of the ingot. Under the impact of vibration, the structure will generate additional deformation, and the strength of the related components also needs to be checked. In the pre-development stage, by combining the theoretical analysis of the simplified model and the simulation analysis of the real physical model, the vibration characteristics of the three-dimensional model for the vibrating ingot mechanism connecting table is studied. The vibration displacement amplification of the displacement sensor is analyzed, the optimization scheme is proposed to reduce the measurement error, and the strength of the structure is tested according to different working conditions. This work may provide some references for subsequent related structural design.

Key words: vacuum melting furnace, ingot withdrawing, vibration, simulation analysis

中图分类号: 

  • TB756
[1] 冯寅楠, 闫鹏, 贾国斌. 电子束冷床熔炼的应用现状[J]. 中国材料进展, 2020, 39(4): 295-303.
[2] 李小孟. 电子束冷床炉熔炼纯钛铸锭的工艺研究[D]. 西安: 西安建筑科技大学, 2015: 17.
[3] 蔡建明, 马济民, 郝孟一, 等. 钛合金中的硬α缺陷及其等离子体冷炉床熔炼控制技术[J]. 失效分析与预防, 2007(2): 51-57.
[4] MLADENOV G, KOLEVA E, VUTOVA K, et al.Practical Aspects and Applications of Electron Beam Irradiation[M]. Trivandrum: Transword Research Network, 2011: 62.
[5] 刘千里, 李向明, 蒋业华. 电子束冷床熔炼钛及钛合金的研究进展[J]. 热加工工艺, 2016, 45(9): 9-14.
[6] 刘玉, 蔡春扬, 王永猛, 等. 新一代连铸结晶器电液直驱伺服缸智能振动[J]. 钢铁技术, 2019(4): 50-53.
[7] 陶红标, 张慧, 王超, 等. 振动激发金属液形核技术在铸锭和板坯凝固过程中的应用[J]. 特殊钢, 2012, 33(6): 18-21.
[8] 李为. 结晶器振动液压系统设计与振动液压缸可靠性研究[D]. 武汉: 武汉科技大学, 2012: 18.
[9] 李建昌, 李永宽, 巴德纯. 微悬臂梁动态特性表征用真空系统的仿真研究[J]. 真空, 2012, 49(6): 4-7.
[10] 李华山, 吴晗, 周强, 等. 某风扇振动破坏的有限元模态分析及试验验证[J]. 压缩机技术, 2016(6): 34-37+41.
[11] XIAO Z Y, LV J H, LIU J C, et al.A joint simulation analysis method for vibration conditions[C]. International Conference on Electronic, Control, Automation and Mechanical Engineering(ECAME 2017), 2017: 924-929.
[12] 刘乐, 李智, 方一鸣, 等. 伺服电机驱动连铸结晶器振动位移系统滑模控制[J]. 电机与控制学报, 2016, 20(12): 101-108.
[13] 刘千里. 电子束冷床炉熔铸超长超薄TA1及TC4扁锭凝固过程控制研究[D]. 昆明: 昆明理工大学, 2018: 11.
[14] 吴旭杰, 张剑, 高华昆. 一种EB炉熔炼钛/钛合金锭的拉锭控制方法: CN109609782A[P].2019-04-12.
[15] 闻邦椿, 刘树英, 张纯宇. 机械振动学. 第2版[M]. 北京: 冶金工业出版社, 2011: 65.
[16] MOHAMAD H B T, NURULAKMAR A H, ZAIDI F B F. Preprocessing and solving finite element analysis for NVH prediction[J]. Applied Mechanics and Materials, 2014, 2846: 112-118.
[17] FOUZI M S M, SANI M S M, YUSRIZAL M. Finite element modelling and updating of welded joint for dynamic study of exhaust structure[J]. IOP Conference Series: Materials Science and Engineering, 2019, 469(1): 87-96.
[18] MONDRUS V, SMIRNOV V.Optical tables vibration isolation during precision measurements[J]. Procedia Engineering, 2015, 111: 561-568.
[19] 周超, 张兴中, 刘平飞, 等. 连铸结晶器非正弦振动装置建模与固有特性分析[J]. 中国机械工程, 2018, 29(16): 1921-1926.
[20] GENE H, BRIAN J, JONATHAN D, et al.Dynamic response modeling of high-speed planing craft with enforced acceleration[J]. Ocean Engineering, 2019, 192: 12-25.
[21] SURESH P S, NESAR N S, RADHAKRISHNAN G.Dynamic landing response analysis of a flexible tailless delta wing aircraft[J]. International Journal of Aerospace Innovations, 2013, 4(3): 103-117.
[1] 刘雷. 线性摩擦焊接摩擦振动伺服系统稳定性分析[J]. 真空, 2021, 58(2): 82-85.
[2] 祁松松, 徐晓辉, 刘家林, 张蕊, 李灿伦, 董德胜, 施承天. 热真空试验设备控温热沉设计分析[J]. 真空, 2020, 57(2): 62-65.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!