欢迎访问沈阳真空杂志社 Email Alert    RSS服务

真空 ›› 2023, Vol. 60 ›› Issue (1): 62-70.doi: 10.13385/j.cnki.vacuum.2023.01.11

• 测量与控制 • 上一篇    下一篇

四极管等效二极管空间电荷限制流研究进展*

吴荣燕1, 武亚新2, 周剑良3, 阳璞琼1, 伍鸿鹄4, 陈容才4   

  1. 1.南华大学电气工程学院,湖南 衡阳 421001;
    2.南华大学化学化工学院,湖南 衡阳 421001;
    3.南华大学核科学技术学院,湖南 衡阳 421001;
    4.成都旭光电子股份有限公司,四川 成都 610500
  • 收稿日期:2022-04-15 出版日期:2023-01-25 发布日期:2023-02-07
  • 通讯作者: 武亚新,讲师。
  • 作者简介:吴荣燕(1981-),男,湖南省永州市人,博士。
  • 基金资助:
    *国家磁约束核聚变能发展研究专项(2019YFE03070000); 湖南省教育厅科学研究一般项目(No.18C0465); 南华大学博士科研启动基金(703,2012XQD07)

Research Advances on Space Charge Limiting Current of Equivalent Diode for Tetrode

WU Rong-yan1, WU Ya-xin2, ZHOU Jian-liang3, YANG Pu-qiong1, WU Hong-hu4, CHEN Rong-cai4   

  1. 1. School of Electrical Engineering, University of South China, Hengyang 421001, China;
    2. School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China;
    3. School of Nuclear Science and Technology, University of South China, Hengyang 421001, China;
    4. Chengdu Xuguang Electronics Co., Ltd., Chengdu 610500, China
  • Received:2022-04-15 Online:2023-01-25 Published:2023-02-07

摘要: 可持续绿色能源核聚变具有清洁环保、原料储量丰富、安全可靠、不产生核废料等优点,是解决未来能源及环境问题的重要选择。然而,实现受控核聚变并非易事,托卡马克是最有希望实现可控聚变能的磁约束装置。大功率真空发射管是托卡马克装置中的一个重要器件,其电流作为发射电子管极限参量和额定功率的一个重要指标,取决于发射管本身的结构、尺寸、材料等。由于四极管的结构和工作原理十分复杂,很难直接获得发射电流随其结构参数变化的情况。可先将四极管等效成二极管结构来探寻二极管空间电荷限制流随其几何结构变化的规律,从而为等离子体加热发射管(四极管)结构设计及优化提供理论参考和有效依据。对此,本文通过查阅相关文献和书籍,对二极管空间电荷限制流方面国内外的研究状况进行总结和分析,并展望了其发展趋势。

关键词: 核聚变, 发射管, 真空二极管, 空间电荷限制流, 热电子发射

Abstract: Due to the advantages of clean and environmentally friendly,abundant raw material reserves,safety and reliability,and no nuclear waste,sustainable green energy nuclear fusion has become an important choice to solve energy and environmental problems in future.However,achieving controlled nuclear fusion is not easy.Tokamak is the most promising magnetic confinement device to realize controllable fusion energy.High power vacuum launch tube is an important component in the Tokamak device.As an important index of the limit parameter and rated power of the transmitting tube,its current depends on the structure,size,material of the transmitting tube itself.The structure and working principle of the tetrode are very complex,so it is very difficult to obtain the variation of emission current with its structural parameters.Therefore,the tetrode can be equivalent to diode structure to explore the law of space charge limited current of diode changing with its geometric structure.The results can provide reference and theoretical basis for the structure design and optimization of the plasma heating transmitting tube.At present,there are many analyzing methods and special simulation software,and they have been widely used in the space charge limiting current.In this regard,by reviewing the related literature and books,the research status of the space charge limited current of the diode at domestic and overseas are summarized and analyzed,and the development tendency is prospected.

Key words: nuclear fusion, transmitting tube, vacuum diode, space charge limited current, thermionic emission

中图分类号: 

  • TL62+6
[1] 张珈珲. EAST上离子回旋天线与等离子的耦合研究[D]. 合肥: 中国科学技术大学, 2017.
[2] 童瀛. 中国能源安全现状问题及对策浅析[J]. 能源与节能, 2013(11): 15-17.
[3] 李耀华, 孔李. 发展太阳能和风能发电技术加速推进我国能源转型[J]. 中国科学院院刊, 2019, 34(4): 426-432.
[4] 王欣, 唐萁, 谢文超, 等. 促进我国海洋可再生能源发展的政策路线研究[J]. 海洋开发与管理, 2016, 33(6): 79-83.
[5] 张百良, 王吉庆, 徐桂转, 等. 中国生物能源利用的思考[J]. 农业工程学报, 2009, 25(9): 226-231.
[6] 陈照. EAST离子回旋共振加热相位和功率控制系统的研究[D]. 合肥: 中国科学技术大学, 2017.
[7] 杨磊. EAST离子回旋共振加热数据与信息管理系统的设计与实现[D]. 合肥: 中国科学技术大学, 2016.
[8] 杨青巍, 丁玄同, 严龙文, 等. 受控热核聚变研究进展[J]. 中国核电, 2019, 12(5): 507-513.
[9] 张微, 杜广, 徐国飞. 中国核聚变研究现状与发展趋势[J]. 科技视界, 2019(5): 148-150.
[10] 肖敏, 吴斌, 钟国强, 等. EAST 中性束注入下快离子输运行为的研究[J]. 核技术, 2020, 43(6): 95-102.
[11] 赵祥学. 稳态中性束注入器束偏转系统研究与优化设计[D]. 合肥: 中国科学技术大学, 2016.
[12] 阳璞琼, 刘波, 蒋才超, 等. 大功率射频离子源驱动器等效阻抗特性分析[J]. 核技术, 2021, 44(8): 91-96.
[13] 杨祥林, 徐淦卿, 韦钰. 微波电子管原理[M]. 北京: 国防工业出版社, 1980: 4-17.
[14] 魏明. 超大功率发射管DB935的研制[D]. 成都: 成都电子科技大学, 2006.
[15] 廖复疆, 吴固基. 真空电子技术[M]. 北京: 国防工业出版社, 1999.
[16] 郭亚明, 刘志飞, 朱自文, 等. 大功率电子管的结构设计与计算工程[M]. 北京: 中国广播影视出版社, 2016: 10-11.
[17] KWAK J G, WANG S J, BAE Y D, et al.Development of high power long-pulse RF transmitter for ICRF heating in fusion researches and cyclotron accelerator[J]. Fusion Engineering and Design, 2011, 86(6): 938-941.
[18] 徐淦卿, 陈德森. 电子管[M]. 上海: 上海科学技术出版社, 1963.
[19] BARKER R J, SCHAMILOGLU E.高功率微波源与技术[M]. 《高功率微波源与技术》翻译组, 译. 北京: 清华大学出版社, 2005.
[20] 曹占国. 基于PIC方法对真空二极管放电特性的研究[D]. 保定: 华北电力大学, 2019.
[21] 万翔. 触发型真空弧粒子源放电特性研究[D]. 绵阳: 中国工程物理研究院, 2014.
[22] BISWAS D, KUMAR R, PURI R R.Absence of saturation for finite injected currents in axially symmetric cavity diode[J]. Physics of plasmas, 2003, 10(11): 4521-4529.
[23] 电子管设计手册编辑委员会. 发射管设计手册[M]. 北京: 国防工业出版社, 1980: 43-96.
[24] CHILD C D.Discharge from hot CaO[J]. Physical Review, 1911, 32(5): 492-511.
[25] LANGMUIR I.The Effect of space charge and residual gases on thermionic currents in high vacuum[J]. Physical Review, 1913, 2(6): 450-486.
[26] LANGMUIR I, BLODGETT K.Currents limited by space charge between coaxial cylinders[J]. Physical Review, 1923, 22(4): 347-356.
[27] LANGMUIR I, BLODGETT K.Currents limited by space charge between concentric spheres[J]. Physical Review, 1924, 24(1): 49-59.
[28] LUGINSLAND J W, LAU Y Y, UMSTATTD R J, et al.Beyond the Child-Langmuir law: a review of recent results on multidimensional space-charge-limited flow[J]. Physics of Plasmas, 2002, 9(5): 2371-2376.
[29] FENG Y, VERBONCOEUR J P, LIN M C, et al.Solution for space charge limited field emission current densities with injection velocity and geometric effects corrections[J]. Physics of Plasmas, 2008, 15(4): 043301-043305.
[30] ZHANG Y H, CHANG A B, FEI X, et al.Repetition rate of intense current electron-beam diodes using 20 GW pulse source[J]. Acta Physica Sinica, 2007, 56(10): 5754-5457.
[31] 左应红, 王建国, 朱金辉. 基于库伦定律的二极管空间电荷限制效应研究[J]. 物理学报, 2012, 61(16): 342-347.
[32] ZUBER J D, JENSEN K L, SULLIVAN T E.An analytical solution for microtip field emission current and effective emission area[J]. Journal of Applied Physics, 2002, 91(11): 9379-9384.
[33] RAVI M, BHAT K S, KHANEJA M, et al.Effective emission area calculation for single tip CNT cathode[C]// 2011 International Vacuum Electronics Conference(IVEC). Bangalore: IEEE, 2011.
[34] SHESTERKIN V I.Effective emission area of multiple-tip autoemission matrices made of glassy carbon[J]. Journal of Communications Technology and Electronics, 2014, 59(8): 788-793.
[35] MILLER R, LAU Y Y, BOOSKE J H, et al.Electric field distribution on knife-edge field emitters[J]. Physical Review Letters, 2007, 91(7): 074105.
[36] SUN S, ANG L K.Onset of space charge limited current for field emission from a single sharp tip[J]. Physics of Plasmas, 2012, 19(3): 033107.
[37] SUN S, ANG L K.Analysis of nonuniform field emission from a sharp tip emitter of Lorentzian or hyperboloid shape[J]. Journal of Applied Physics, 2013, 113(14): 144902.
[38] ZHU Y B, ANG L K.Space charge limited current emission for a sharp tip[J]. Physics of Plasmas, 2015, 22(5): 052106.
[39] BISWAS D.Field-emission from parabolic tips: current distributions,the net current,and effective emission area[J]. Physics of Plasmas, 2018, 25(4): 043105.
[40] BISWAS D.A universal formula for the field enhancement factor[J]. Physics of Plasmas, 2018, 25(4): 043113.
[41] 郝建红, 曹占国, 周前红. 轴对称真空二极管空间电荷限制流[J]. 强激光与粒子束, 2018, 30(12): 43-48.
[42] LUGINSLAND J W, LAU Y Y, GILGENBACH R M.Two-dimensional Child-Langmuir law[J]. Physical Review Letters, 1996, 77(22): 4668-4670.
[43] LAU Y Y.Simple theory for the two-dimensional Child- Langmuir law[J]. Physical Review Letters, 2001, 87(27): 278301.
[44] KOH W S, ANG L K, KWAN T J T. Three-dimensional Child-Langmuir law for uniform hot electron emission[J]. Physics of Plasmas, 2005, 12(5): 053107.
[45] RAGAN-KELLEY B, VERBONCOEUR J, FENG Y.Two-dimensional axisymmetric Child-Langmuir scaling law[J]. Physics of Plasmas, 2009, 16(10): 103102.
[46] KOSTOV K G, BARROSO J J.Space-charge-limited current in cylindrical diodes with finite-length emitter[J]. Physics of Plasmas, 2002, 9(3): 1039-1042.
[47] YANG Z F, LIU G Z, SHAO H, et al.Relativistic solutions for one-and two-dimensional space-charge limited current in coaxial diode[J]. Physics of Plasmas, 2013, 20(5): 053103.
[48] NEIRA E, VEGA F.Solution for the space-charge-limited current in coaxial vacuum diodes[J]. Physics of Plasmas, 2017, 24(5): 052117.
[49] 刘国治. 二极管空间电荷限制流修正[J]. 强激光与粒子束, 2000, 12(3): 375-378.
[50] 邵浩, 刘国志, 宋志敏, 等. 向内发射同轴型二极管电流电压关系二维修正[J]. 强激光与粒子束, 2001, 13(5): 631-636.
[51] 李永东, 何峰, 刘纯亮. 轴对称平板二极管空间电荷限制流的2维效应[J]. 强激光与粒子束, 2005, 17(6): 913-916.
[52] 吴荣燕, 周剑良, 阳璞琼. 热电子发射同轴二极管几何结构对空间电荷限制流的影响[J]. 原子能科学技术, 2021, 55(8): 1516-1522.
[53] WU R Y, ZHOU J L, WU Y X.Investigation of quantitative relation between the Π cathode structure of cylindrical diode and current of cathode[J]. IEEE Transactions on Plasma Science, 2021, 49(9): 2757-2764.
[54] 胡权. 微波管电子光学系统数值模拟及CAD技术研究[D]. 成都: 成都电子科技大学, 2011.
[55] UMSTATTD R J, LUGINSLAND J W.Two-dimensional space-charge-limited emission: beam-edge characteristics and applications[J]. Physical Review Letters, 2001, 87(14): 145002.
[56] ROKHLENKO A, LEBOWITZ J L.Space-charge-limited 2D electron flow between two flat electrodes in a strong magnetic field[J]. Physical Review Letters, 2003, 91(8): 085002.
[57] 刘大刚, 祝大军, 周俊, 等. 3维电磁粒子模拟程序设计[J]. 强激光与粒子束, 2006, 18(1): 110-114.
[58] 丁未. 140GHz回旋振荡管谐振腔的并行三维粒子模拟研究[D]. 成都: 电子科技大学, 2016.
[59] 刘光辉, 宋宜梅, 刘海浪, 等. 基于CST粒子工作室的熔炼电子枪发生系统的仿真[J]. 桂林电子科技大学学报, 2016, 36(2): 144-147.
[60] SPACHMANN H, BECKER U.Electron gun simulation with CST particle studio[J]. Nuclear Instruments and Methods in Physics Research, 2006, 558(1): 50-53.
[61] SAFI D, BIRTEL P, MEYNE S, et al.A traveling-wave tube simulation approach with CST particle studio[J]. IEEE Transactions on Electron Devices, 2018, 65(6): 2257-2263.
[62] TIAN H W, LU Z G, SHAO W, et al.3-D fast nonlinear simulation for beam-wave interaction of sheet beam traveling-wave tube[J]. IEEE Transactions on Electron Devices, 2019, 66(3): 1504-1511.
[63] LANGELLOTTI S V, JORDAN N M, LAU Y Y, et al.CST particle studio simulations of coaxial multipactor and comparison with experiments[J]. IEEE Tansactions on Plasma Science, 2020, 48(6): 1942-1949.
[64] PACKARD D A, COOLEYBECK A, JORDAN N M, et al.HFSS and CST simulations of a GW-class MILO[J]. IEEE Tansactions on Plasma Science, 2020, 48(6): 1894-1901.
[65] 周俊. 电磁粒子模拟方法及其应用研究[D]. 成都: 成都电子科技大学, 2009.
[66] 邵福球. 等离子体粒子模拟[M]. 北京: 科学出版社, 2002.
[67] 王闽. 等离子体物理及其计算机模拟[M]. 西安: 陕西科学技术出版社, 1993.
[68] DAWSON J M.Thermal relaxation in a one-species, one-dimensional plasma[J]. Physics of Fluids, 1964, 7(3): 419-425.
[69] GOPLEN B, LUDEKING L, SMITHE D, et al.Magic user′s manual[M]. Newington, VA: Mission Researh Corp., 1991.
[70] BIRMAN K, COOPER R, JOSEPH T, et al.The ISIS system manual, version 1.2[M]. New York: Cornell University, 1989.
[71] VERBONCOEUR J P, LANGDON A B, GLADD N T.An object-oriented electromagnetic PIC code[J]. Computer Physics Communications, 1995, 87(1): 199-211.
[72] 周俊, 刘大刚, 刘盛纲, 等. 面向对象的粒子模拟 CAD 建模系统[J]. 电子学报, 2008, 36(3): 556-561.
[73] GOPLEN B, LUDEKING L, SMITHE D, et al.User configurable MAGIC for electromagnetic PIC calculations[J]. Computer Physics Communications, 1995, 87(1): 54-86.
[74] CST studion suite user′s manual[Z].CST studion suite user′s manual[Z]. Dassault Systèmes, 2020.
[75] TARAKANOV V P.User′s manual for code KARAT[M]. Springfield, VA, USA: Berkley Res., 1999.
[76] MARDAHL P, GREENWOOD A, MURPHY T, et al.Parallel performance characteristics of ICEPIC[C]//User Group Conference. Bellevue, WA, USA: IEEE, 2003: 86-90.
[77] COCO S, EMMA F, LAUDANI A, et al.COCA: a novel 3-D FE simulator for the design of TWTs multistage collectors[J]. IEEE Trans. Electron Devices, 2001, 48(1): 24-31.
[78] 殷勇, 祝大军, 刘盛纲, 等. 35GHz, TE021回旋速调管的电磁模拟[J]. 电子学报, 2005, 33(6): 1024-1027.
[79] 吴荣燕. 四极管等效二极管阴极结构与电流关系[D]. 衡阳: 南华大学, 2021.
[1] 方有维, 刘林, 俞世吉, 李玉涛. 金属钼、铪栅极材料电子发射问题研究[J]. 真空, 2022, 59(6): 60-64.
[2] 王坤, 王世庆, 李建, 但敏, 陈伦江. 磁控溅射制备紧固件防咬死涂层的厚度均匀性研究*[J]. 真空, 2021, 58(1): 67-71.
[3] 李建, 童洪辉, 但敏, 金凡亚, 王坤, 陈伦江. 类金刚石膜用作负氢离子表面转化材料的可行性分析*[J]. 真空, 2020, 57(4): 6-10.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!