欢迎访问沈阳真空杂志社 Email Alert    RSS服务

真空 ›› 2023, Vol. 60 ›› Issue (5): 60-65.doi: 10.13385/j.cnki.vacuum.2023.05.09

• 薄膜 • 上一篇    下一篇

基于分子动力学方法模拟石墨烯膜剥离行为*

方久康, 董淑宏   

  1. 江南大学机械工程学院 江苏省食品先进制造装备与技术重点实验室,江苏 无锡 214122
  • 收稿日期:2022-12-30 出版日期:2023-09-25 发布日期:2023-09-26
  • 通讯作者: 董淑宏,副教授,硕导。
  • 作者简介:方久康(1997-),男,江苏省南京市人。
  • 基金资助:
    *国家自然科学基金资助项目(11602096,11972171)

Peeling Behaviors of Graphene Film by Molecular Dynamics Simulations

FANG Jiu-kang, DONG Shu-hong   

  1. Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
  • Received:2022-12-30 Online:2023-09-25 Published:2023-09-26

摘要: 通过分子动力学(MD)方法研究了从基底表面剥离制备石墨烯薄膜时,基底表面粗糙度、剥离角度以及温度等因素对剥离行为的影响,同时在理论上探讨了剥离力随剥离角度的变化关系。结果表明:随着基底表面粗糙度的增加和温度的升高,剥离力逐渐增加;温度在金属辅助剥离石墨烯膜过程中也存在影响,可以通过合理调控温度剥离出不同层数的石墨烯;当剥离角度从0°变化到90°时,剥离力逐渐降低,理论计算与MD模拟结果相一致。本研究可以为探索石墨烯薄膜从粗糙基底表面剥离行为提供一定理论参考。

关键词: 分子动力学模拟, 粗糙基底, 石墨烯膜, 剥离

Abstract: In this paper, effects of substrate surface roughness, peeling angle and temperatureon the peeling property of graphene films are studied in details by molecular dynamics(MD) simulations. In addition, a theoretical model characterizing the peeling force and the peeling angle ispresented. The results show that the peeling force increases with the increasing surface roughness of the substrate and temperature. Meanwhile, the effect of temperature on the preparation of graphene films by metal assisted stripping is also highlighted, graphene with different layers can be peeled out by adjusting the temperature reasonably. The peeling force gradually decreases when the peeling angle changes from 0° to 90°, which is in consistent with the theoretical prediction. The results can provide a reference for exploring the peeling performance of graphene film from a rough substrate.

Key words: molecular dynamics simulation, rough substrate, graphene membrane, peeling behavior

中图分类号:  TH145;O561

[1] LAU C N, BAO W, VELASCO J.Properties of suspended graphene membranes[J]. Materials Today, 2012, 15(6): 238-245.
[2] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al.Two-dimensional gas of massless Dirac fermions in graphene[J]. Nature, 2005, 438(7065): 197-200.
[3] LEE C, WEI X, KYSAR J W, et al.Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science, 2008, 321(5887): 385-388.
[4] GEIM A K, NOVOSELOV K S.The rise of graphene[J]. Nature Materials, 2007, 6(3): 183-191.
[5] GEIM A K.Graphene: status and prospects[J]. Science, 2009, 324(5934): 1530-1534.
[6] PRASAI D, TUBERQUIA J C, HARL R R, et al.Graphene: corrosion-inhibiting coating[J]. ACS Nano, 2012, 6(2): 1102-1108.
[7] 杨威, 魏贤龙. 片上电子源的研究现状(二)[J]. 真空, 2020, 57(1): 1-10.
[8] EDA G, FANCHINI G, CHHOWALLA M.Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material[J]. Nature Nanotechnology, 2008, 3(5): 270-274.
[9] 李建鹏, 张驰, 李建昌. 柔性电子器件疲劳特性的研究进展[J]. 真空, 2021, 58(5): 11-25.
[10] 关磊. 一维碳纳米材料的研究进展[J]. 真空, 2013, 50(6): 72-76.
[11] 张哲, 李建昌. 微阵列结构柔性压力传感器研究进展[J/OL]. 真空, 2022: 1-30. http://kns.cnki.net/kns8/
defaultresult/index.
[12] STANKOVICH S, DIKIN D A, DOMMETT G H, et al.Graphene-based composite materials[J]. Nature, 2006, 442(7100): 282-286.
[13] 刘艳梅, 苗玉华, 潘新, 等. 激光熔覆镍包石墨和石墨烯复合涂层组织和性能分析[J]. 真空, 2020, 57(4): 85-88.
[14] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al.Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669.
[15] DESAI S B, MADHVAPATHY S R, AMANI M, et al.Gold-mediated exfoliation of ultralarge optoelectronically-
perfect monolayers[J]. Advanced Materials, 2016, 28(21): 4053-4058.
[16] CHEN H, CHEN S H.The peeling behaviour of a graphene sheet on a nano-scale corrugated surface[J]. Journal of Physics D: Applied Physics, 2013, 46(43): 435305.
[17] 白清顺, 沈荣琦, 何欣, 等. 纳米微结构表面与石墨烯薄膜的界面黏附特性研究[J]. 物理学报, 2018, 67(3): 22-30.
[18] PENG Z, YIN H, YAO Y, et al.Effect of thin-film length on the peeling behavior of film-substrate interfaces[J]. Physical Review E, 2019, 100(3): 032804.
[19] GAO E, LIN S Z, QIN Z, et al.Mechanical exfoliation of two-dimensional materials[J]. Journal of the Mechanics and Physics of Solids, 2018, 115: 248-262.
[20] CAO G, GAO H.Mechanical properties characterization of two-dimensional materials via nanoindentation experiments[J]. Progress in Materials Science, 2019, 103: 558-595.
[21] PENG Z, WANG C, CHEN L, et al.Peeling behavior of a viscoelastic thin-film on a rigid substrate[J]. International Journal of Solids and Structures, 2014, 51(25/26): 4596-4603.
[22] STUART S J, TUTEIN A B, HARRISON J A.A reactive potential for hydrocarbons with intermolecular interactions[J]. The Journal of Chemical Physics, 2000, 112(14): 6472-6486.
[23] FOILES S M, BASKES M I, DAW M S.Embedded- atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys[J]. Physical Review B: Condensed Matter and Materials Physics, 1986, 33(12): 7983-7991.
[24] VERLET L.Computer “experiments” on classical fluids.I.Thermodynamical properties of Lennard-Jones molecules[J]. Physical Review, 1967, 159(1): 98-103.
[25] HUANG SP, MAINARDI D S, BALBUENA P B.Structure and dynamics of graphite-supported bimetallic nanoclusters[J]. Surface Science, 2003, 545(3): 163-179.
[26] LI Y, XIONG Y, ZHOU Z, et al.The peeling behavior of nanowires and carbon nanotubes from a substrate using continuum modeling[J]. Journal of Applied Physics, 2017, 121(5): 054303
[27] 潘俊超. 纳米尺度下受限水的粘附、剪切及输运[D]. 无锡: 江南大学, 2020.
[1] 张骁, 刘招贤, 孟冬辉, 任国华, 王莉娜, 闫荣鑫. 多孔石墨烯渗氦仿真研究*[J]. 真空, 2021, 58(1): 10-14.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!