欢迎访问沈阳真空杂志社 Email Alert    RSS服务

真空 ›› 2023, Vol. 60 ›› Issue (5): 81-85.doi: 10.13385/j.cnki.vacuum.2023.05.13

• 真空获得与设备 • 上一篇    下一篇

超大型真空容器大门设计及优化研究

祁松松, 倪俊, 李卓慧, 施承天, 冯蕾, 陈红斌, 李灿伦   

  1. 上海卫星装备研究所,上海 200240
  • 收稿日期:2022-11-03 出版日期:2023-09-25 发布日期:2023-09-26
  • 作者简介:祁松松(1990-),男,上海市人,硕士,高级工程师。

Research on Gate Design and Optimization of Super Large Vacuum Vessel

QI Song-song, NI Jun, LI Zhuo-hui, SHI Cheng-tian, FENG Lei, CHEN Hong-bin, LI Can-lun   

  1. Shanghai Institute of spacecraft Equipment, Shanghai 200240, China
  • Received:2022-11-03 Online:2023-09-25 Published:2023-09-26

摘要: 本文以直径10m的超大型真空容器大门为研究对象,介绍了超大型立式容器大门的设计分析情况,采用可靠性设计与仿真优化相结合的方法,对大门在外压和起吊时的强度和变形分布进行了模拟分析,并根据分析结果对大门加强筋布置进行了优化设计。研究表明:在封头曲率变化较大处与加强筋之间设置补强板,可以有效减少大门局部应力超限的问题;封头加强筋减少至6根可以降低材料用量,此时最大应力为97.37MPa,最大变形为4.1mm,仍然可以满足材料使用要求;大门起吊时整体承受重力载荷,最大变形量为0.13mm,最大应力为18.6MPa,满足材料使用要求。

关键词: 真空容器, 大门优化设计, 仿真分析

Abstract: This paper takes the super large vacuum vessel gate with a diameter of 10m as the research object, the design and analysis of the super large vertical vacuum vessel gate are introduced. The strength and deformation of the gate under external pressure and lifting are simulated and analyzed by using the method of reliability design and simulation optimization, and the stiffener arrangement of the gate is optimized according to the analysis results. The research work shows that the problem of local stress overrun of the gate can be effectively reduced by setting a reinforcing plate between head and stiffener at the place where the curvature changes greatly. Reducing the number of head stiffeners to six can reduce the material consumption. In this case, the maximum stress increases to 97.37MPa and the maximum deformation increases to 4.1mm, which can still meet the material use requirements. When lifting, the whole gate bears the gravity load with the maximum deformation of 0.13mm and the maximum stress of 18.6MPa, which can meet the material use requirements.

Key words: vacuum vessel, gate optimization design, simulation analysis

中图分类号:  TB756

[1] 黄本诚, 马有礼. 航天器空间环境试验技术[M]. 北京: 国防工业出版社, 2002.
[2] 朱凼凼, 冯咬齐, 向树红. KM5A真空容器屈曲稳定有限元分析[J]. 航天器环境工程, 2004(3): 23-28.
[3] 刘均, 黄宝宗, 徐成海. 加筋真空容器稳定性分析[J]. 东北大学学报(自然科学版), 2002, 23(4): 398-400.
[4] 王林, 张雨晨, 姚志燕, 等. 超大型真空容器设计计算[C]// 压力容器先进技术——第十届全国压力容器学术会议论文集(上). 杭州: 中国机械工程学会压力容器分会, 2021.
[5] 孙志明, 何超, 张英莉, 等. 大型卧式真空容器的设计及有限元分析[J]. 真空, 2019, 56(2): 26-30.
[6] 黄本诚, 陈金明, 祁妍, 等. 真空容器设计[J]. 中国空间科学技术, 2002, 22(3): 6-12.
[7] 张世一, 陈丽, 齐晓军, 等. KM5B空间环境模拟试验设备研制[J]. 航天器环境工程, 2016, 33(4): 434-438.
[8] 吕世增, 韩潇, 祁妍. 大型空间环境模拟设备真空容器可靠性优化设计[J]. 真空科学与技术学报, 2016, 36(1): 38-43.
[9] 韩潇, 祁妍. 大型真空容器结构设计中的有限元分析与应用[J]. 航天器环境工程, 2009, 26(2): 150-153.
[10] 范虹, 王明富, 张杰. 基于ANSYS的大型立式真空绝热容器外下封头加强结构设计[J]. 化工设备与管道, 2011, 48(3): 4-7.
[11] 祁妍, 高永新, 刘波涛. 基于FEA的某真空容器封头结构的强度评定[J]. 航天器环境工程, 2008, 25(1): 64-67.
[12] 顾福明, 张亚余, 汤建. 大型真空容器封头的焊接制造工艺[J]. 焊接技术, 2006, 35(4): 30-32.
[13] 王顺. 大型真空容器封头的制作[J]. 人造纤维, 2006, 36(3): 39-40.
[14] 姚志燕, 齐大伟, 王林, 等. 大型真空球形容器的稳定性设计[J]. 石油化工设备技术, 2018, 39(4): 12-15.
[15] 臧少锋, 钱才富. 超大型真空容器非线性稳定分析[J]. 北京化工大学学报(自然科学版), 2009(5): 88-91.
[16] 张龙彪. 基于ANSYS的大型真空钢制球罐有限元分析[D]. 沈阳: 东北大学, 2014.
[17] 达道安. 真空设计手册[M]. 3版. 北京: 国防工业出版社, 2006.
[18] 周炬, 苏金英. ANSYS-Workbench 有限元分析实例详解: 静力学[M]. 北京: 人民邮电出版社, 2017.
[19] 程新宇. 大型钢制矩形常压容器有限元分析设计[J]. 石油化工设备, 2017, 46(1): 40-43.
[20] 韩清凯, 孙伟, 王伯平, 等. 机械结构有限单元法基础[M]. 北京: 科学出版社, 2013.
[21] 张浩, 张合金, 翟悦, 等. 机载外挂真空容器的吊环设计及拓扑优化[J]. 真空, 2022, 59(5): 86-90.
[1] 张浩, 张合金, 翟悦, 王杰. 机载外挂真空容器的吊环设计及拓扑优化[J]. 真空, 2022, 59(5): 86-90.
[2] 马强, 孙足来, 张哲魁, 牟鑫, 李建军, 王秋博. 大功率真空电子束冷床熔炼炉拉锭机构振动仿真分析[J]. 真空, 2021, 58(5): 104-109.
[3] 祁松松, 徐晓辉, 刘家林, 张蕊, 李灿伦, 董德胜, 施承天. 热真空试验设备控温热沉设计分析[J]. 真空, 2020, 57(2): 62-65.
[4] 孙志明, 何超, 张英莉, 朱志鹏, 岳向吉, 张斌, 巴德纯. 大型卧式真空容器的设计及有限元分析[J]. 真空, 2019, 56(2): 26-30.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!