欢迎访问沈阳真空杂志社 Email Alert    RSS服务

真空 ›› 2025, Vol. 62 ›› Issue (3): 89-93.doi: 10.13385/j.cnki.vacuum.2025.03.16

• 测量与控制 • 上一篇    下一篇

浮空器囊体材料连接可靠性评估方法

董莉, 姚芮   

  1. 中国电子科技集团公司第三十八研究所,安徽 合肥 230088
  • 收稿日期:2024-05-13 出版日期:2025-05-25 发布日期:2025-05-23
  • 作者简介:董莉(1990-),女,山东聊城人,博士,高级工程师。

Methods for Evaluating Connection Reliability of Aerostat Envelope Material

DONG Li, YAO Rui   

  1. No.38 Research Institute of CETC, Hefei 230088, China
  • Received:2024-05-13 Online:2025-05-25 Published:2025-05-23

摘要: 囊体材料的连接可靠性对浮空器的稳定运行具有重要影响,为保证囊体材料片幅连接后的可靠性,选取不同热合参数对两种面密度不同的囊体材料及配套热合布进行了热合试验。在热合剥离强度满足指标要求的前提下,通过高温蠕变试验进一步对热合部位进行了性能评估。结果表明:随着热合时间延长,囊体材料的热合剥离强度逐渐增加;面密度较高的囊体材料拉伸强度和剥离强度均较高;剥离强度满足指标的热合样件在高温蠕变试验后也可能出现脱层现象,热合材料胶层未完全熔融是样件脱层的主要原因。

关键词: 浮空器, 高温蠕变, 囊体材料, 连接可靠性, 热合剥离

Abstract: The connection reliability of the envelope material is important to the stability of the aerostat. In order to ensure the reliability of the connected material, the thermal bonding test of two kinds of envelope materials with different surface densities and matching materials was conducted at different processing parameters. Under the premise that the thermal bonding stripping strength meets the requirements of the index, the performance of thermal bonding part is further evaluated by high temperature creep test. The results show that the thermal bonding stripping strength of the envelope material gradually increases with the heat sealing time. The envelope material with higher surface density has higher tensile strength and stripping strength. The thermal bonding part with qualified stripping strength may delaminate after high temperature creep test, and incomplete melting of the adhesive layer is the main reason for the delamination of the samples.

Key words: aerostat, high-temperature creep, envelope material, connection reliability, thermal bonding stripping

中图分类号:  TQ014

[1] 罗昔柳,刘俊涛,张海艳,等. 快速部署浮空器总体技术研究[J]. 宇航总体技术,2019,3(5):17-22.
[2] 王彦广,王伟志,黄灿林. 平流层飞行器技术的最新发展[J]. 航天返回与遥感,2019,40(2):1-13.
[3] 袁红艳,闻丽,齐艳华. 平流层飞艇可靠性指标论证方法研究[J]. 航空计算技术,2021,51(5):42-45.
[4] 田越,蔡若凡,姜秀梅,等. 基于机器视觉的浮空器囊体材料表面缺陷检测系统[J]. 电子机械工程,2023,39(2):50-53.
[5] 袁军行,王平安,朱善璋. 浮空器抓手结构优化设计[J]. 舰船电子工程,2022,42(6):194-198.
[6] 阿力木·安外尔,张大旭,何巍,等. 基于深度学习的涂层织物折皱识别与检测[J]. 计算机工程与应用,2021,57(14):116-125.
[7] 高晓枫. 浮空器蒙皮材料制备与应用技术发展研究[J]. 湖南工业职业技术学院学报,2019,19(2):6-9.
[8] 刘帅,朱仁胜,张金奎,等. 浮空器蒙皮材料老化后透氦率实验研究[J]. 装备环境工程,2018,15(7):25-28.
[9] 崔馨文,蒋金华,李俊. Vectran纤维在飞艇蒙皮材料中的力学性能研究[J]. 复合材料科学与工程,2022(1):73-78.
[10] 赵霞军,张伟. 基于数字图像技术的飞艇气囊材料应变测试[J]. 科学技术与工程,2019,19(28):378-383.
[11] 王思明,谭惠丰,罗锡林,等.Nylon-230T/TPU织物蒙皮撕裂性能的数值模拟和试验研究[J].复合材料学报,2018,35(7):1869-1877.
[12] 郭康丽,张一辉,张一铭,等. 聚合物阻隔薄膜及其发展应用[J]. 工程塑料应用,2018,46(1):128-133.
[13] 刘平平,武国军,卢欢,等. 自然环境对飞艇蒙皮材料聚氨酯耐候层性能的影响[J]. 弹性体,2021,31(5):25-28.
[14] 刘怡慧,王延荣,魏大盛. 不同取向双晶粒结构材料的蠕变行为分析[J]. 航空动力学报,2022,37(10):2201-2212.
[15] 王霖琳,郭珊珊,李红,等. 高低温交变对PVC膜材料拉伸及蠕变性能的影响[J]. 东华大学学报(自然科学版),2023,49(1):14-19.
[16] 赵雷,宋恺,徐连勇,等. 高温部件蠕变-疲劳寿命预测方法[J]. 电力科技与环保,2023,39(1):26-34.
[17] 李慕珂,李自力,李扬,等. 聚氨酯泡沫材料的高温蠕变特性[J]. 石油化工高等学校学报,2018,31(2):96-100.
[18] 王怡楠,盛冬发,李忠君,等. 考虑损伤效应的PVC竹粉复合材料蠕变性能分析[J]. 河南科技,2023,42(2):35-39.
[19] 马永,赵世平,卢丙举,等. 橡胶减震器材料时变蠕变力学行为研究[J]. 舰船科学技术,2021,43(1):95-101.
[20] 王珂,高龙乾,张世鑫,等. 新型钛合金材料室温拉伸蠕变试验研究[J]. 船舶力学,2022,26(4):557-565.
[21] 汪泽幸,李帅,何斌,等. 应力回复对PVC涂层膜材料蠕变性能的影响[J]. 产业用纺织品,2021,39(4):45-49.
[22] 张秀雨,于俊荣,彭宏,等. 硅烷交联改性对UHMWPE纤维蠕变性能的影响[J]. 东华大学学报(自然科学版),2015,41(1):1-5.
[1] 朱善璋, 董莉. 浮空器囊体热合区域透氦率性能研究[J]. 真空, 2024, 61(4): 75-79.
[2] 董莉. 浮空器囊体材料的气密性研究[J]. 真空, 2024, 61(2): 68-72.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!