欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2019, Vol. 56 ›› Issue (6): 7-11.doi: 10.13385/j.cnki.vacuum.2019.06.02

Previous Articles     Next Articles

Photocathode Used as Microwave Vacuum Electronic Devices

LIU Yan-wen1, TIAN Hong1, LU Yu-xin2, SHI Wen-qi1, ZHU Hong1, LI Fen1, LI Yun1, GU Bing1, WANG Xiao-xia1   

  1. 1.The Institute of Electronics, Chinese Academy of Science, Beijing100080, China;
    2.Tianjin Traffic Vocational Institute, Tianjin 300110, China
  • Received:2019-06-04 Online:2019-11-25 Published:2019-12-03

Abstract: To meet the needs of high-frequency, miniaturized vacuum microwave devices, to find suitable cathode materials and laser systems, the photocathode for microwave vacuum electronic devices were studied. The photocathode with diffusion barrier was prepared, by heating the layer of emissive material storage chamber to provides a controlled photoemissive layer for replacing the evaporation loss of the active material, thereby extending the life of the cathode and recovering from poisoning and exposure to the atmosphere. The Cs3Sb photocathode was prepared in an ultra-high vacuum system. The quantum efficiency is about 0.145% at the wavelength of 532 nm, when the photoelectric is illuminated by the continuous laser with an energy of 0.37 W, a current density of 29.2 mA/cm2 of the photoemission can be obtained. If the photocathode is damaged by the high-intensity laser, it can be reheated and activated. The photoelectric emission can be restored to a certain degree and stabilized for a long time. This photocathode has the characteristics of reproducible activation and is expected to be ideal electronic source for microwave vacuum electronic devices.

Key words: microwave vacuum electronic devices, photocathode, driven by laser, emission properties

CLC Number: 

  • TN107
[1] 廖复疆. 大功率微波真空电子学技术进展[J].电子学报, 2006, 313(3):513-516.
[2] Shin Y M,Barnett L R,Gamzina D,Lhmann N C,Terahertz vacuum electronic circuits fabricated by UV lithographic molding and reactive ion etching[J].Appl. Phys. Lett., 2009, 95(18):181 505- 1-181 505-3.
[3] Chu K R.The electron cycltron maser[J]. Rev.Mod.Phs,2004,76:2489-540.
[4] Sirigiri J R,Shaprio, M A and Temkin R J, High power 140GHz quasi-optical gyrotron travelling wave amplifier[J].Phys. Rev.lett., 2003, 90(25):56302.
[5] 刘燕文,田宏,支取发射电流对热阴极温度影响的研究[J].中国科学E,2008,(9):1515-1520.
[6] Liu Y W, Tian Hong, The temperature variation of a thermionic cathode during electron emission[J]. Sciende in China E,2008,51(9):1497-1501.
[7] 王小霞,廖显恒,罗积润,亚微米电子发射材料的合成及发射性能[J].物理学报,2008,57(1):1924-1929.
[8] Wang X X, Liao X H, Zhao Q L, et al.Performance of an Oxide cathode prepared from submierometer carbomates[J]. IEEE.Trans.Electr.Devices,2011, 58(9):3195-3199.
[9] Gaertner G, Janiel P, Raasch D.Direct Determination of Electrical conductivity of Oxide cathode[J]. Appl. Surf. Sci,2002,201:35-40.
[10] Raju R S, Maloney C E, Characterization of an Impregnated Scandated Cathode Using a Semiconductor Model[J]. IEEE.Trans.Electr.Devices,1994,41:2460-2467.
[11] Wang J S, Liu W.A study of scadndia-dopedresscathode[J]. IEEE.Trans.Electr.Devices,2009,56:799-804.
[12] Melinikva I P.Correlation of emission capability and longevity of dispenser cathodes with characterstics of tungsten powders[J].Appl. Surf. Sci.,2003, 215 :59-64.
[13] 刘燕文,田宏,陆玉新,用于浸渍阴极的钨海绵基体的净化[J]. 真空科学与技术学报, 2018, 38(2)144-149.
[14] 刘燕文,刘胜英,田宏. 用于空间行波管高效覆膜阴极组件的研究[J].真空科学与技术学报,2006,26(3):240-242.
[15] Barika R K, Beraa A, Rajub RS.Development of alloy-film coated dispenser cathode for terahertz vacuum electron devices application[J]. Appl.Surf. Sci. 2013,276:817-822.
[16] Isagawa S.Application of M-type cathode to hig-power cw klystron[J]. Appl. Surf. Sci. ,1999,146:88-96.
[17] Liu Y W, Tian H, Han Y.Study on the emission properties of the impregnated cathode with nanoparticle films[J]. IEEE Transactions on Electron Devices, 2012, 59:3618-3624.
[18] Zhu J, Wang S L, Xie S H, et al.Hexagonal single crystal growth of WO3 nanorodsalong a [110] axis with enhanced adsorption capacity[J]. Chem Commun, 2011, 47:4403-4405.
[19] Wang H L, Hao Q L, Yang X J, et al.A nanostructured graphene/polyaniline hybrid material for supercapacitors[J]. Nanoscale, 2010,2:2164-2170.
[20] Wang S L, He Y H, Liu X L, et al.Large-scale synthesis of tungsten single-crystalmicrotubes via vapor-deposition process[J]. J Cryst Growth, 2011,316:137-144.
[21] Whaley D, Duggal R, Armstrong C, et al.High Average Power Field Emitter Cathode and Testbed For X/Ku-Band Cold Cathode TWT[C].IVEC2013, 161-162,Paris,France,May.
[22] 刘燕文,张耿民. 激光驱动的钠钾锑光电阴极的发射限制特性[J].北京大学学报,1996,32:96-101.
[23] Somer A H.光电发射材料[M]. 北京:科学出版社,1979.
[24] Lee C H.Electron emission of over 200A/cm2 from a pulsed0laser irradiation photocathode[J]. IEEE Trans. Nucl.Sci.1985,32(5):3045-3047.
[25] 刘燕文,张根民. 钠钾锑光电阴极的稳定性研究[J]. 中国激光,1996,23:255-259.
[26] Liu Y W, Zhang G M.The high field enhancement of photoemission fome Na2KSb photo-cathodes[J]. Nucl.Instr.meth.phys.Res.1996,A376:146-147.
[27] 张耿民,吴全德. BaO 晶体中的Ba 超微粒子[J]. 北京大学学报,1997,33:97-103.
[28] 张篁,陈德彪. 直线感应加速器用光阴极实验研究[J]. 强激光与粒子,2010,22,583-586.
[29] 常本康. NEA GaN和GaAs光电阴极的比较[J]. 红外技术,2017,12:1073-1077.
[30] 刘燕文,田宏,石文奇,等. 用于微波真空电子器件的光电阴极及其制备方法(P),发明专利,201910512769.x.
[31] 刘燕文,孟宪展,田宏,等. 空间行波管极高真空的获得与测量[J]. 真空, 2018, 55(5):25-28.
[1] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube [J]. VACUUM, 2018, 55(5): 25-28.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] LI Zhi-sheng. Development of ultra large shielded door for infrared calibration in simulated space environment[J]. VACUUM, 2018, 55(5): 66 -70 .
[4] ZHENG Lie, LI Hong. Design of 200kV/2mA continuous adjustable DC high voltage generator[J]. VACUUM, 2018, 55(6): 10 -13 .
[5] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[6] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[7] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[8] JI Ming, SUN Liang, YANG Min-bo. Design of automatic sealing and locking scheme for lunar sample[J]. VACUUM, 2018, 55(6): 24 -27 .
[9] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[10] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .