欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2021, Vol. 58 ›› Issue (2): 58-61.doi: 10.13385/j.cnki.vacuum.2021.02.12

• Vacuum Technology Application • Previous Articles     Next Articles

Storage of Copper Parts Used in Microwave Vacuum Devices

LIU Yan-wen1, ZHAO Li2, LU Yu-xin3, TIAN Hong1, SHI Wen-qi1, ZHAO Heng-bang1   

  1. 1. Aerospace Information Research Institute, Chinese Academy of Science, Beijing 100190, China;
    2. CASIC Space Engineering Development, Beijing 100854, China;
    3. Tianjin Traffic Vocational Institute, Tianjin 300110, China
  • Received:2020-05-10 Online:2021-03-25 Published:2021-04-09

Abstract: The storage of metal parts is the basic condition for the microwave vacuum devices. Slow wave components are generally stored in vacuum cabinets. After storage for a period of time, blackening occurs on the copper plating surface of the helix in the slow wave component. The analysis showed that the copper plating on the surface of the helix was vulcanized. Combined with further experimental research and theoretical analysis, the rubber products placed in the vacuum cabinet caused the surface blackening of the copper material. In the vacuum, sulfur is relatively easy to sublimate from the rubber sleeve into the vacuum cabinet, which will diffuse a large amount of sulfur vapor in the vacuum cabinet. These sulfur vapor easily reacts with copper to form Cu2S, so the sulfur-containing rubber sleeve should not be placed in a vacuum cabinet, and the use of sulfur-containing rubber products in vacuum electronic devices should be prevented from contacting copper parts.

Key words: microwave vacuum devices, slow-wave structures of helix, copper, storage

CLC Number: 

  • TN107
[1] LIU Y W, TIAN H, LU Y X.Influences of Diamond Material on Heat Dissipation Capabilities of Helical Slow Wave Structures[J]. IEEE Transactions on Electron Devices. 2019, 66(12): 5321-5326.
[2] 荀涛, 孙晓亮, 樊玉伟, 等. 重频吉瓦级高功率微波源硬管化技术研究, 电子科技大学学报, 2020, 1: 87-91.
[3] 刘燕文, 王小霞, 田宏, 等. 纳米粒子薄膜热电子发射性能[J]. 中国科学信息科学, 2015, 45: 145-156.
[4] 廖复疆. 大功率微波真空电子学技术进展[J]. 电子学报, 2006, 313(3): 513-516.
[5] LIU Y W, TIAN H.The temperature variation of a thermionic cathode during electron emission[J]. Science in China E. 2008, 51(9): 1497-1501.
[6] SHIN Y M, BARNETT L R, GAMZINA D, et al. Terahertz vacuum electronic circuits fabricated by UV lithographic molding and reactive ion etching[J]. Applied Physics Letter.2009, 95(18): 181 505- 1-181 505-3.
[7] SIRIGIRI J R, SHAPRIO M A, TEMKIN R J.High power 140GHz quasi-optical gyrotron travelling wave amplifier[J]. Physics Review letter. 2003, 90(25): 56302-56310.
[8] 刘燕文, 田宏, 韩勇, 等. 支取发射电流对热阴极温度影响的研究[J]. 中国科学E, 2008, (9): 1515-1520.
[9] 刘燕文, 田宏. 空间行波管极高真空的获得与测量[J]. 真空, 2018, 55(5): 25-28.
[10] WANG X X, LIAO X H, ZHAO Q L, et al.Performance of an Oxide cathode prepared from submierometercarbomates[J]. IEEE Transactions on Electron Devices. 2011, 58(9): 3195-3199.
[11] 刘燕文, 田宏, 韩勇, 等. 发射均匀的覆纳米粒子薄膜阴极的研究[J]. 物理学报, 2009, 58: 535-542.
[12] LIU Y W, TIAN H, HAN Y.Study on the emission properties of the impregnated cathode with nanoparticle films[J]. IEEE Transactions on Electron Devices. 2012, 59(12): 3618-3624.
[13] WANG X X, LIU Y W.Preparation and Evaluation of the Ammonium Perrhenate Impregnated Ni Sponge Oxide Cathode[J]. IEEE Transactions on ElectronDevices, 2014, 61(2): 605-610.
[14] 廖复疆, 吴固基. 真空电子技术-军事电子装备的心脏[M]. 北京: 国防工业出版社, 2001: 12.
[15] 刘燕文等, 螺旋线行波管慢波组件散热性能研究进展, 真空科学与技术学报, 2011, 31(4): 424-431.
[16] 肖琰, 天然橡胶硫化胶的热氧老化研究, 西北工业大学, 硕士论文, 2006, 20.
[17] 张以忱, 黄英. 真空材料[M]. 北京: 冶金工业出版社, 2005: 73.
[18] 刘燕文, 王小霞, 陆玉新, 等. 用于电真空器件的金属材料蒸发特性[J]. 物理学报, 2016, 65(63): 068502-1-7.
[19] KOHL W H.Materials technology for electron tubes[M]. New York: ReinholdPublishing Corporation, 1951: 162.
[1] ZHANG Xiao, LIU Zhao-xian, MENG Dong-hui, REN Guo-hua, WANG Li-na, YAN Rong-xin. Simulation Study on Porous Graphene Helium Permeation [J]. VACUUM, 2021, 58(1): 10-14.
[2] LIU Yan-wen, TIAN Hong, LU Yu-xin, SHI Wen-qi, ZHU Hong, LI Fen, LI Yun, GU Bing, WANG Xiao-xia. Photocathode Used as Microwave Vacuum Electronic Devices [J]. VACUUM, 2019, 56(6): 7-11.
[3] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube [J]. VACUUM, 2018, 55(5): 25-28.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!